New AI Tool Helps Detect Brain Aneurysms On CT Angiography Exams
By MedImaging International staff writers Posted on 24 Jun 2019 |

Image: In this brain scan, the location of an aneurysm is indicated by HeadXNet using a transparent red highlight (Photo courtesy of Allison Park).
Researchers from Stanford University (Stanford, CA, USA) have developed an artificial intelligence (AI) tool that can help radiologists improve their diagnoses of brain aneurysms by highlighting the areas of a brain scan that are likely to contain an aneurysm.
To overcome the inherent challenges of complex neurovascular anatomy and potential fatal outcome of a missed aneurysm, the researchers focused on creating an AI tool that could accurately process large stacks of 3D images and complement clinical diagnostic practice. The tool is built around an algorithm called HeadXNet which was trained by outlining clinically significant aneurysms detectable on 611 computed tomography (CT) angiogram head scans. The researchers focused on its ability to identify the presence aneurysms rather than on detecting their absence.
Following the training, the algorithm decides for each voxel of a scan whether there is an aneurysm present. As a result of the HeadXNet tool, the algorithm’s conclusions overlaid as a semi-transparent highlight on top of the scan. This representation of the algorithm’s decision allows clinicians to also see what the scans look like without HeadXNet’s input. HeadXNet was tested by eight clinicians who evaluated a set of 115 brain scans for aneurysm, once with the help of HeadXNet and once without. With the tool, the clinicians correctly identified more aneurysms, thereby reducing the “miss” rate, and were more likely to agree with one another. HeadXNet did not influence the time it took for the clinicians to decide on a diagnosis or their ability to correctly identify scans without aneurysms.
“There’s been a lot of concern about how machine learning will actually work within the medical field,” said Allison Park, a Stanford graduate student in statistics and co-lead author of the paper published in JAMA Network Open. “This research is an example of how humans stay involved in the diagnostic process, aided by an artificial intelligence tool.”
HeadXNet’s success in these experiments is promising and the machine learning methods at its heart could likely be trained to identify other diseases inside and outside the brain. For example, the researchers imagine a future version could focus on speeding up identifying aneurysms after they have burst, saving precious time in an urgent situation. However, the researchers have cautioned that further investigation is needed to evaluate generalizability of the AI tool prior to real-time clinical deployment due to differences in scanner hardware and imaging protocols across different hospital centers.
“Because of these issues, I think deployment will come faster not with pure AI automation, but instead with AI and radiologists collaborating,” said Andrew Ng, adjunct professor of computer science and co-senior author of the paper who leads Stanford’s Machine Learning Group. “We still have technical and non-technical work to do, but we as a community will get there and AI-radiologist collaboration is the most promising path.”
Related Links:
Stanford University
To overcome the inherent challenges of complex neurovascular anatomy and potential fatal outcome of a missed aneurysm, the researchers focused on creating an AI tool that could accurately process large stacks of 3D images and complement clinical diagnostic practice. The tool is built around an algorithm called HeadXNet which was trained by outlining clinically significant aneurysms detectable on 611 computed tomography (CT) angiogram head scans. The researchers focused on its ability to identify the presence aneurysms rather than on detecting their absence.
Following the training, the algorithm decides for each voxel of a scan whether there is an aneurysm present. As a result of the HeadXNet tool, the algorithm’s conclusions overlaid as a semi-transparent highlight on top of the scan. This representation of the algorithm’s decision allows clinicians to also see what the scans look like without HeadXNet’s input. HeadXNet was tested by eight clinicians who evaluated a set of 115 brain scans for aneurysm, once with the help of HeadXNet and once without. With the tool, the clinicians correctly identified more aneurysms, thereby reducing the “miss” rate, and were more likely to agree with one another. HeadXNet did not influence the time it took for the clinicians to decide on a diagnosis or their ability to correctly identify scans without aneurysms.
“There’s been a lot of concern about how machine learning will actually work within the medical field,” said Allison Park, a Stanford graduate student in statistics and co-lead author of the paper published in JAMA Network Open. “This research is an example of how humans stay involved in the diagnostic process, aided by an artificial intelligence tool.”
HeadXNet’s success in these experiments is promising and the machine learning methods at its heart could likely be trained to identify other diseases inside and outside the brain. For example, the researchers imagine a future version could focus on speeding up identifying aneurysms after they have burst, saving precious time in an urgent situation. However, the researchers have cautioned that further investigation is needed to evaluate generalizability of the AI tool prior to real-time clinical deployment due to differences in scanner hardware and imaging protocols across different hospital centers.
“Because of these issues, I think deployment will come faster not with pure AI automation, but instead with AI and radiologists collaborating,” said Andrew Ng, adjunct professor of computer science and co-senior author of the paper who leads Stanford’s Machine Learning Group. “We still have technical and non-technical work to do, but we as a community will get there and AI-radiologist collaboration is the most promising path.”
Related Links:
Stanford University
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more