AI Predicts How NSCLC Patients Will Respond to Chemotherapy
By MedImaging International staff writers Posted on 26 Mar 2019 |
Researchers may soon be able to predict which lung cancer patients will respond to chemotherapy by using data from computed tomography (CT) images. Platinum-based chemotherapy is usually adopted as the first-line treatment of advanced-stage non–small cell lung cancer (NSCLC), although only about one out four patients responds well to this treatment.
There is presently no way to predict which patients can benefit the most from chemotherapy. CT exams are routinely used for tumor staging and monitoring treatment response. Researchers use a field of study called radiomics to extract quantitative, or measurable, data from CT images that can reveal disease characteristics not visible in the images alone. In the latest study, the researchers focused on identifying the role of radiomic texture features—both within and around the lung tumor—in predicting time to progression and overall survival, as well as response to chemotherapy in patients with NSCLC.
The researchers analyzed data from 125 patients who had been treated with pemetrexed-based platinum doublet chemotherapy. They randomly divided the patients into two sets with an equal number of responders and non-responders in the training set. The training set comprised 53 patients with NSCLC, and the validation set comprised 72 patients.
A computer analyzed the CT images of lung cancer to identify unique patterns of heterogeneity both inside and outside the tumor. These patterns were then compared between CT scans of patients who did and did not respond to chemotherapy. These feature patterns were then used to train a machine learning classifier in order to identify the likelihood that a lung cancer patient would respond to chemotherapy. The results showed that the radiomic features derived from within the tumor and the area around the tumor were able to distinguish patients who responded to chemotherapy from those who did not. Additionally, the radiomic features predicted time to progression and overall survival.
The radiomic data derived from CT images can also potentially help identify those patients who are at elevated risk for recurrence and who might benefit from more intensive observation and follow-up, according to Mohammadhadi Khorrami, M.S, a Ph.D. candidate from the Department of Biomedical Engineering, Case Western Reserve University School of Engineering in Cleveland, Ohio, who, along with Monica Khunger, M.D, from the Department of Internal Medicine at Cleveland Clinic, led the study.
“When we looked at patterns inside the tumor, we got an accuracy of 0.68. But when we looked inside and outside, the accuracy went up to 0.77,” said Khorrami. “Despite the large number of studies in the CT-radiomics space, the immediate surrounding tumor area, or the peritumoral region, has remained relatively unexplored. Our results showed clear evidence of the role of peritumoral texture patterns in predicting response and time to progression after chemotherapy.”
“This is the first study to demonstrate that computer-extracted patterns of heterogeneity, or diversity, from outside the tumor were predictive of response to chemotherapy,” said Dr. Khunger. “This is very critical because it could allow for predicting in advance of therapy which patients with lung cancer are likely to respond or not. This, in turn, could help identify patients who are likely to not respond to chemotherapy for alternative therapies such as radiation or immunotherapy.”
Related Links:
Case Western Reserve University School of Engineering
Cleveland Clinic
There is presently no way to predict which patients can benefit the most from chemotherapy. CT exams are routinely used for tumor staging and monitoring treatment response. Researchers use a field of study called radiomics to extract quantitative, or measurable, data from CT images that can reveal disease characteristics not visible in the images alone. In the latest study, the researchers focused on identifying the role of radiomic texture features—both within and around the lung tumor—in predicting time to progression and overall survival, as well as response to chemotherapy in patients with NSCLC.
The researchers analyzed data from 125 patients who had been treated with pemetrexed-based platinum doublet chemotherapy. They randomly divided the patients into two sets with an equal number of responders and non-responders in the training set. The training set comprised 53 patients with NSCLC, and the validation set comprised 72 patients.
A computer analyzed the CT images of lung cancer to identify unique patterns of heterogeneity both inside and outside the tumor. These patterns were then compared between CT scans of patients who did and did not respond to chemotherapy. These feature patterns were then used to train a machine learning classifier in order to identify the likelihood that a lung cancer patient would respond to chemotherapy. The results showed that the radiomic features derived from within the tumor and the area around the tumor were able to distinguish patients who responded to chemotherapy from those who did not. Additionally, the radiomic features predicted time to progression and overall survival.
The radiomic data derived from CT images can also potentially help identify those patients who are at elevated risk for recurrence and who might benefit from more intensive observation and follow-up, according to Mohammadhadi Khorrami, M.S, a Ph.D. candidate from the Department of Biomedical Engineering, Case Western Reserve University School of Engineering in Cleveland, Ohio, who, along with Monica Khunger, M.D, from the Department of Internal Medicine at Cleveland Clinic, led the study.
“When we looked at patterns inside the tumor, we got an accuracy of 0.68. But when we looked inside and outside, the accuracy went up to 0.77,” said Khorrami. “Despite the large number of studies in the CT-radiomics space, the immediate surrounding tumor area, or the peritumoral region, has remained relatively unexplored. Our results showed clear evidence of the role of peritumoral texture patterns in predicting response and time to progression after chemotherapy.”
“This is the first study to demonstrate that computer-extracted patterns of heterogeneity, or diversity, from outside the tumor were predictive of response to chemotherapy,” said Dr. Khunger. “This is very critical because it could allow for predicting in advance of therapy which patients with lung cancer are likely to respond or not. This, in turn, could help identify patients who are likely to not respond to chemotherapy for alternative therapies such as radiation or immunotherapy.”
Related Links:
Case Western Reserve University School of Engineering
Cleveland Clinic
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more