AI Software Predicts Ovarian Cancer Survival Rates From CT Scans
By MedImaging International staff writers Posted on 01 Mar 2019 |
Researchers from the Imperial College London (London, England) and the University of Melbourne (Melbourne, Australia) have created a new machine learning software that can forecast the survival rates and response to treatments of patients with ovarian cancer. The artificial intelligence (AI) software can predict the prognosis of patients with ovarian cancer more accurately than the current methods and can also predict the most effective treatment for patients following diagnosis.
In their study, the researchers used a mathematical software tool called TEXLab to identify the aggressiveness of tumors in CT scans and tissue samples from 364 women with ovarian cancer between 2004 and 2015. The software examined four biological characteristics of the tumors that significantly influence overall survival - structure, shape, size and genetic makeup - to assess the patients’ prognosis. The patients were then given a score known as Radiomic Prognostic Vector (RPV), which indicates how severe the disease is, ranging from mild to severe.
When the researchers compared the results with blood tests and current prognostic scores used by doctors to estimate survival, they found the software to be four times more accurate at predicting deaths from ovarian cancer than the standard methods. The researchers also found that 5% of patients with high RPV scores had a survival rate of less than two years. According to the researchers, the technology could be used to identify patients who are unlikely to respond to standard treatments and offer them alternative treatments. They now plan to carry out a larger study to see how accurately the software can predict the outcomes of surgery and/or drug therapies for individual patients.
“The long-term survival rates for patients with advanced ovarian cancer are poor despite the advancements made in cancer treatments. There is an urgent need to find new ways to treat the disease,” said Professor Eric Aboagye, lead author and Professor of Cancer Pharmacology and Molecular Imaging, at Imperial College London. “Our technology is able to give clinicians more detailed and accurate information on the how patients are likely to respond to different treatments, which could enable them to make better and more targeted treatment decisions.”
“Artificial intelligence has the potential to transform the way healthcare is delivered and improve patient outcomes,” added Professor Andrea Rockall, co-author and Honorary Consultant Radiologist, at Imperial College Healthcare NHS Trust. “Our software is an example of this and we hope that it can be used as a tool to help clinicians with how to best manage and treat patients with ovarian cancer.”
Related Links:
Imperial College London
University of Melbourne
In their study, the researchers used a mathematical software tool called TEXLab to identify the aggressiveness of tumors in CT scans and tissue samples from 364 women with ovarian cancer between 2004 and 2015. The software examined four biological characteristics of the tumors that significantly influence overall survival - structure, shape, size and genetic makeup - to assess the patients’ prognosis. The patients were then given a score known as Radiomic Prognostic Vector (RPV), which indicates how severe the disease is, ranging from mild to severe.
When the researchers compared the results with blood tests and current prognostic scores used by doctors to estimate survival, they found the software to be four times more accurate at predicting deaths from ovarian cancer than the standard methods. The researchers also found that 5% of patients with high RPV scores had a survival rate of less than two years. According to the researchers, the technology could be used to identify patients who are unlikely to respond to standard treatments and offer them alternative treatments. They now plan to carry out a larger study to see how accurately the software can predict the outcomes of surgery and/or drug therapies for individual patients.
“The long-term survival rates for patients with advanced ovarian cancer are poor despite the advancements made in cancer treatments. There is an urgent need to find new ways to treat the disease,” said Professor Eric Aboagye, lead author and Professor of Cancer Pharmacology and Molecular Imaging, at Imperial College London. “Our technology is able to give clinicians more detailed and accurate information on the how patients are likely to respond to different treatments, which could enable them to make better and more targeted treatment decisions.”
“Artificial intelligence has the potential to transform the way healthcare is delivered and improve patient outcomes,” added Professor Andrea Rockall, co-author and Honorary Consultant Radiologist, at Imperial College Healthcare NHS Trust. “Our software is an example of this and we hope that it can be used as a tool to help clinicians with how to best manage and treat patients with ovarian cancer.”
Related Links:
Imperial College London
University of Melbourne
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more