We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

New All-Optical System Could Revolutionize Image-Guided Interventions

By MedImaging International staff writers
Posted on 29 Aug 2018
Print article
Image: All-optical ultrasound imager. This prototype is the first all-optical ultrasound imager to demonstrate video-rate, real-time 2D imaging of biological tissue. The achievement is an important step toward making all-optical ultrasound practical for routine clinical use, where it could offer significant advantages over current imaging technology (Photo courtesy of Erwin J. Alles, University College London).
Image: All-optical ultrasound imager. This prototype is the first all-optical ultrasound imager to demonstrate video-rate, real-time 2D imaging of biological tissue. The achievement is an important step toward making all-optical ultrasound practical for routine clinical use, where it could offer significant advantages over current imaging technology (Photo courtesy of Erwin J. Alles, University College London).
A new ultrasound system that uses optical, instead of electronic components, could improve performance while providing doctors with significantly more flexibility in the way they use ultrasound to diagnose and treat medical problems. For the first time, researchers have demonstrated the use of an all-optical ultrasound imager for video-rate, real-time 2D imaging of biological tissue, marking a significant step towards making all-optical ultrasound practical for routine clinical use. Since all-optical ultrasound systems do not require any electronic components in the imaging probe, they could be safely used at the same time as magnetic resonance imaging (MRI) scanners. This can provide doctors with a more comprehensive picture of the tissues around an area of interest, such as a tumor or blood vessel, according to a recent paper published in the Optical Society (OSA) journal Biomedical Optics Express.

Conventional ultrasound imagers use arrays of electronic transducers to transmit high-frequency sound waves into tissue and receive the reflections, whereas all-optical ultrasound imagers use light to both transmit and receive ultrasound waves. Pulsed laser light is used to generate ultrasound waves, and scanning mirrors control where the waves are transmitted into the tissue. A fiber optic sensor then receives the reflected waves.

The researchers demonstrated how the light source can be manipulated to generate either low frequency ultrasound, resulting in greater penetration into the tissue, or high frequency ultrasound, which offers higher resolution images at a shallower depth. The team tested their prototype system by imaging a deceased zebrafish and a pig artery that was manipulated to emulate the dynamics of pulsing blood. The demonstration showed imaging capabilities comparable to an electronic high-frequency ultrasound system, with a sustained frame rate of 15 Hertz, a dynamic range of 30 decibels, a penetration depth of 6 millimeters and a resolution of 75 by 100 micrometers.

The researchers are now working to adapt the technology for clinical use by developing a long, flexible imaging probe for free-hand operation, as well as miniaturized versions for endoscopic applications. In conventional ultrasound devices, the electronic components make it difficult to miniaturize the devices for internal use. On the other hand, optical components are easily miniaturized and tiny all-optical ultrasound probes are likely be significantly less expensive to manufacture as compared to compact electronic ultrasound systems, according to the researchers.

“All-optical ultrasound imaging probes have the potential to revolutionize image-guided interventions,” said Erwin J. Alles, University College London. “A lack of electronics and the resulting MRI compatibility will allow for true multimodality image guidance, with probes that are potentially just a fraction of the cost of conventional electronic counterparts.”

New
Mobile Cath Lab
Photon F65/F80
Digital X-Ray Detector Panel
Acuity G4
New
HF Stationary X-Ray Machine
TR20G
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more