AI Software Interprets Brain Scans to Improve Diagnoses
By MedImaging International staff writers Posted on 29 May 2018 |
Scientists at Imperial College London (Kensington, London, UK) and the University of Edinburgh (Scotland) have created a new software that can identify and measure the severity of small vessel disease (SVD), which is among the most common factors responsible for stroke and dementia. According to the researchers, the technology could help clinicians provide patients with the best treatment more quickly in emergency settings, predict a person’s likelihood of developing dementia and pave the way for more personalized medicine.
Currently, doctors diagnose SVD by observing changes in the brain’s white matter during MRI or CT scans, although diagnosing the severity of the disease with the human eye is a difficult task. CT scans often make it difficult to decide where the edges of the SVD are, which makes it difficult for doctors to estimate the severity of the disease. Moreover, MRI is not commonly used to detect and measure SVD owing to issues such as availability of scanners and suitability in the case of emergency or older patients.
For the study, the researchers used historical data of 1,082 CT scans of stroke patients and compared the results from the software to a panel of expert doctors who estimated SVD severity from the same scans. The researchers found the level of agreement of the software with the experts to be as good as the agreement between the experts themselves. Additionally, in 60 cases the researchers obtained MRI and CT in the same subjects, and used the MRI to estimate the exact amount of SVD, the software was found to be 85% accurate at predicting the severity of SVD.
The researchers are now using similar methods to measure the amount of brain shrinkage and other conditions that are commonly diagnosed using brain CT. The researchers believe that the software could help influence decision-making for doctors in emergency neurological conditions and lead to more personalized medicine. For instance, in the near future, doctors could use the software to estimate the likely risk of hemorrhage in stroke patients before administering ‘clot busting medications’ to unblock an artery. The software can also help measure the possibility of patients developing dementia or immobility due to slowly progressive SVD.
“This is the first time that machine learning methods have been able to accurately measure a marker of small vessel disease in patients presenting with stroke or memory impairment who undergo CT scanning,” said Dr Paul Bentley, lead author and Clinical Lecturer at Imperial College London. “Our technique is consistent and achieves high accuracy relative to an MRI scan - the current gold standard technique for diagnosis. This could lead to better treatments and care for patients in everyday practice.”
“This is a first step in making a scan reading tool that could be useful in mining large routine scan datasets and, after more testing, might aid patient assessment at hospital admission with stroke,” added Professor Joanna Wardlaw, Head of Neuroimaging Sciences at the University of Edinburgh.
Related Links:
Imperial College London
University of Edinburgh
Currently, doctors diagnose SVD by observing changes in the brain’s white matter during MRI or CT scans, although diagnosing the severity of the disease with the human eye is a difficult task. CT scans often make it difficult to decide where the edges of the SVD are, which makes it difficult for doctors to estimate the severity of the disease. Moreover, MRI is not commonly used to detect and measure SVD owing to issues such as availability of scanners and suitability in the case of emergency or older patients.
For the study, the researchers used historical data of 1,082 CT scans of stroke patients and compared the results from the software to a panel of expert doctors who estimated SVD severity from the same scans. The researchers found the level of agreement of the software with the experts to be as good as the agreement between the experts themselves. Additionally, in 60 cases the researchers obtained MRI and CT in the same subjects, and used the MRI to estimate the exact amount of SVD, the software was found to be 85% accurate at predicting the severity of SVD.
The researchers are now using similar methods to measure the amount of brain shrinkage and other conditions that are commonly diagnosed using brain CT. The researchers believe that the software could help influence decision-making for doctors in emergency neurological conditions and lead to more personalized medicine. For instance, in the near future, doctors could use the software to estimate the likely risk of hemorrhage in stroke patients before administering ‘clot busting medications’ to unblock an artery. The software can also help measure the possibility of patients developing dementia or immobility due to slowly progressive SVD.
“This is the first time that machine learning methods have been able to accurately measure a marker of small vessel disease in patients presenting with stroke or memory impairment who undergo CT scanning,” said Dr Paul Bentley, lead author and Clinical Lecturer at Imperial College London. “Our technique is consistent and achieves high accuracy relative to an MRI scan - the current gold standard technique for diagnosis. This could lead to better treatments and care for patients in everyday practice.”
“This is a first step in making a scan reading tool that could be useful in mining large routine scan datasets and, after more testing, might aid patient assessment at hospital admission with stroke,” added Professor Joanna Wardlaw, Head of Neuroimaging Sciences at the University of Edinburgh.
Related Links:
Imperial College London
University of Edinburgh
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more