AI-Driven Software Assists Radiologists in Reading Exams
|
By MedImaging International staff writers Posted on 01 Mar 2018 |

Image: The software engine named Transpara DBT is intended to assist radiologists in reading digital breast tomosynthesis and mammography exams (Photo courtesy of ScreenPoint Medical).
An Artificial Intelligence (AI)-driven decision support software engine, which assists radiologists in reading digital breast tomosynthesis (DBT) and mammography exams on breast-reading workstations, was launched at the European Congress of Radiology (ECR), Vienna, Austria, February 28 – March 4, 2018. The software engine named Transpara DBT was launched by ScreenPoint Medical (Nijmegen, Netherlands), which develops and markets image analysis technology and services for automated reading of mammograms and digital breast tomosynthesis exams, exploiting Big Data, Deep Learning and the latest developments in AI.
Transpara DBT utilizes breakthrough image analysis and deep learning technologies for providing information to significantly improve reading workflow for DBT on breast reading workstations. It allows the reader to automatically jump to a relevant DBT slice in both the CC and MLO 3D data, by simply clicking on a suspicious region in a synthetic mammogram. Transpara DBT marks the lesion in the relevant slices and provides quantitative decision support for individual soft tissue lesions and calcifications, thereby improving the radiologists’ reading accuracy and confidence in their assessment.
Additionally, Transpara DBT combines the analysis of soft tissue lesions and calcifications, if present, from all available views of an exam to compute a single score for the case on a scale of 1 to 10. This represents categories with increasing occurrence of cancer. The Transpara Score can be used by healthcare professionals and organizations to automatically identify exams that are highly likely to be normal and to help identify cases that need increased attention.
The software engine is multi-vendor and communicates via DICOM, allowing integration into PACS and mammography reading workstations. The Transpara algorithms use the full 3D information in DBT data and have been trained on very large databases, including thousands of examples of breast cancer and false positives.
“Transpara DBT was developed with the goal of improving the efficiency of reading tomosynthesis exams,” said Prof. Nico Karssemeijer, PhD, CEO of ScreenPoint Medical. “By providing interactive decision support to radiologists, we aim to help all readers achieve better performance and improve their workflow, representing a significant innovation in breast cancer screening.”
Related Links:
ScreenPoint Medical
Transpara DBT utilizes breakthrough image analysis and deep learning technologies for providing information to significantly improve reading workflow for DBT on breast reading workstations. It allows the reader to automatically jump to a relevant DBT slice in both the CC and MLO 3D data, by simply clicking on a suspicious region in a synthetic mammogram. Transpara DBT marks the lesion in the relevant slices and provides quantitative decision support for individual soft tissue lesions and calcifications, thereby improving the radiologists’ reading accuracy and confidence in their assessment.
Additionally, Transpara DBT combines the analysis of soft tissue lesions and calcifications, if present, from all available views of an exam to compute a single score for the case on a scale of 1 to 10. This represents categories with increasing occurrence of cancer. The Transpara Score can be used by healthcare professionals and organizations to automatically identify exams that are highly likely to be normal and to help identify cases that need increased attention.
The software engine is multi-vendor and communicates via DICOM, allowing integration into PACS and mammography reading workstations. The Transpara algorithms use the full 3D information in DBT data and have been trained on very large databases, including thousands of examples of breast cancer and false positives.
“Transpara DBT was developed with the goal of improving the efficiency of reading tomosynthesis exams,” said Prof. Nico Karssemeijer, PhD, CEO of ScreenPoint Medical. “By providing interactive decision support to radiologists, we aim to help all readers achieve better performance and improve their workflow, representing a significant innovation in breast cancer screening.”
Related Links:
ScreenPoint Medical
Latest Industry News News
- Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreMRI
view channel
MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
Recovery after traumatic brain injury (TBI) varies widely, with some patients regaining full function while others are left with lasting disabilities. Prognosis is especially difficult to assess in patients... Read more
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreGeneral/Advanced Imaging
view channel
AI Tool Offers Prognosis for Patients with Head and Neck Cancer
Oropharyngeal cancer is a form of head and neck cancer that can spread through lymph nodes, significantly affecting survival and treatment decisions. Current therapies often involve combinations of surgery,... Read more
New 3D Imaging System Addresses MRI, CT and Ultrasound Limitations
Medical imaging is central to diagnosing and managing injuries, cancer, infections, and chronic diseases, yet existing tools each come with trade-offs. Ultrasound, X-ray, CT, and MRI can be costly, time-consuming,... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more







