Fetal MRI Superior for Detecting Zika Brain Damage
By MedImaging International staff writers Posted on 18 Oct 2017 |

Image: An illustration of Zika virus in the blood (Photo courtesy of SPL).
Fetal magnetic resonance imaging (MRI) should be used in addition to ultrasound (US) to reveal the extent of brain damage caused by the Zika virus in the developing brain, claims a new study.
Researchers at Children's National Health System (CNHS; Washington, DC, USA) conducted a longitudinal neuroimaging study that enrolled 48 pregnant women exposed to the Zika virus in the first or second trimester, and whose infection was confirmed by reverse transcription polymerase chain reaction (PCR) and/or Immunoglobulin M testing. Of the study participants, 46 live in Barranquilla (Colombia), where Zika infection is endemic, and two women live in the Washington DC (USA) region and were exposed to Zika during travel elsewhere.
All of the women underwent at least one diagnostic imaging session while pregnant, receiving an initial MRI or US at 25.1 weeks gestational age, with 36 women undergoing a second MRI/US imaging pair at roughly 31 weeks gestation. Three of the pregnancies (6%) were marked by abnormal fetal MRIs. One fetus had heterotopias and abnormal cortical indent; but the ultrasound taken at the same gestational age showed its brain was developing normally. Another fetus had parietal encephalocele and Chiari malformation Type II, with US also detecting these brain abnormalities.
A third fetus had a thin corpus callosum, abnormally developed brain stem, temporal cysts, general cerebral and cerebellar atrophy, and subependymal heterotopias. US revealed major ventriculomegaly and a fetal head circumference that decreased sharply from the 32nd to 36th gestational week, a hallmark of microcephaly. After the children were born, the infants underwent a follow-up MRI without sedation and another US. For nine infants, the US revealed cysts in the choroid plexus or germinal matrix, and one infant's US after birth showed lenticulostriate vasculopathy brain lesions. The study was presented at the annual IDWeek meeting, held during October 2017 in San Diego (CA, USA).
“MRI and US provide complementary data needed to assess ongoing changes to the brains of fetuses exposed to Zika in utero,” said lead author and study presenter CNHS fetal/neonatal neurologist Sarah Mulkey, MD, PhD. “In addition, our study found that relying on ultrasound alone would have given one mother the false assurance that her fetus' brain was developing normally, while the sharper MRI clearly pointed to brain abnormalities.”
Zika virus is a member of the Flaviviridae family, of the genus Flavivirus, and is transmitted by the daytime-active Aedes mosquitoes. In adults, the virus causes a mild illness known as Zika fever. Locally transmitted Zika virus was first reported in Brazil in May 2015, and since then health authorities have estimated that around a million suspected cases have occurred. Brazilian health authorities also observed a significant increase in the number of detected cases of microcephaly and Guillain-Barré Syndrome affecting fetuses and newborns.
Related Links:
Children's National Health System
Researchers at Children's National Health System (CNHS; Washington, DC, USA) conducted a longitudinal neuroimaging study that enrolled 48 pregnant women exposed to the Zika virus in the first or second trimester, and whose infection was confirmed by reverse transcription polymerase chain reaction (PCR) and/or Immunoglobulin M testing. Of the study participants, 46 live in Barranquilla (Colombia), where Zika infection is endemic, and two women live in the Washington DC (USA) region and were exposed to Zika during travel elsewhere.
All of the women underwent at least one diagnostic imaging session while pregnant, receiving an initial MRI or US at 25.1 weeks gestational age, with 36 women undergoing a second MRI/US imaging pair at roughly 31 weeks gestation. Three of the pregnancies (6%) were marked by abnormal fetal MRIs. One fetus had heterotopias and abnormal cortical indent; but the ultrasound taken at the same gestational age showed its brain was developing normally. Another fetus had parietal encephalocele and Chiari malformation Type II, with US also detecting these brain abnormalities.
A third fetus had a thin corpus callosum, abnormally developed brain stem, temporal cysts, general cerebral and cerebellar atrophy, and subependymal heterotopias. US revealed major ventriculomegaly and a fetal head circumference that decreased sharply from the 32nd to 36th gestational week, a hallmark of microcephaly. After the children were born, the infants underwent a follow-up MRI without sedation and another US. For nine infants, the US revealed cysts in the choroid plexus or germinal matrix, and one infant's US after birth showed lenticulostriate vasculopathy brain lesions. The study was presented at the annual IDWeek meeting, held during October 2017 in San Diego (CA, USA).
“MRI and US provide complementary data needed to assess ongoing changes to the brains of fetuses exposed to Zika in utero,” said lead author and study presenter CNHS fetal/neonatal neurologist Sarah Mulkey, MD, PhD. “In addition, our study found that relying on ultrasound alone would have given one mother the false assurance that her fetus' brain was developing normally, while the sharper MRI clearly pointed to brain abnormalities.”
Zika virus is a member of the Flaviviridae family, of the genus Flavivirus, and is transmitted by the daytime-active Aedes mosquitoes. In adults, the virus causes a mild illness known as Zika fever. Locally transmitted Zika virus was first reported in Brazil in May 2015, and since then health authorities have estimated that around a million suspected cases have occurred. Brazilian health authorities also observed a significant increase in the number of detected cases of microcephaly and Guillain-Barré Syndrome affecting fetuses and newborns.
Related Links:
Children's National Health System
Latest MRI News
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read more
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more