AI X-ray Analysis Equal to Orthopedic Surgeon Diagnosis
By MedImaging International staff writers Posted on 20 Jul 2017 |

Image: Examples of dataset images presents to networks for classification (Photo courtesy of Max Gordon/ Danderyd Hospital).
A new study suggests that artificial intelligence (AI) deep learning algorithms are on par with humans for diagnosing fractures from orthopedic radiographs.
Researchers at Karolinska Institutet (KI; Solna, Sweden), the Royal Institute of Technology (KTH; Stockholm, Sweden), and Danderyd Hospital (Sweden) extracted 256,000 wrist, hand, and ankle radiographs stored at Danderyd Hospital, classifying them by four variables - fracture, laterality, body part, and exam view. Five deep learning networks were then examined, with the most accurate network benchmarked against a gold standard for fractures.
The deep learning networks were then trained to identify fractures in two thirds of the radiographs under the guidance of the researchers, and then independently analyzed the remaining images, which were completely new to the AI program. Analysis was then compared with that of two senior orthopedic surgeons who reviewed the images at the same resolution as the network. The results showed that all networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view.
The final accuracy for fractures was estimated at 83% for the best performing network, which was equivalent to that of senior orthopedic surgeons when they were presented with images at the same resolution as the network. According to the researchers, AI has the potential to do even better with access to greater amounts of data, and they have therefore begun a follow-up study that will include Danderyd Hospital's entire orthopedic archive of over a million high-resolution radiographs. The study was published on July 6, 2017, in Acta Orthopaedica.
“Our study shows that AI networks can make assessments on a par with human specialists, and we hope that we'll be able to achieve even better results with high-res X-ray images,” said senior author Max Gordon, MD, assistant consultant in orthopedics at Danderyd Hospital. “If we can go back to our digital archives, we'll also be able to do extensive research on survival, the development of disease and work capacity - studies that have been impossible to do owing to the amount of data to process.”
Deep learning is part of a broader family of machine learning methods that is based on learning data representations, as opposed to task specific algorithms. It involves artificial neural network (ANN) algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.
Related Links:
Karolinska Institutet
Royal Institute of Technology
Danderyd Hospital
Researchers at Karolinska Institutet (KI; Solna, Sweden), the Royal Institute of Technology (KTH; Stockholm, Sweden), and Danderyd Hospital (Sweden) extracted 256,000 wrist, hand, and ankle radiographs stored at Danderyd Hospital, classifying them by four variables - fracture, laterality, body part, and exam view. Five deep learning networks were then examined, with the most accurate network benchmarked against a gold standard for fractures.
The deep learning networks were then trained to identify fractures in two thirds of the radiographs under the guidance of the researchers, and then independently analyzed the remaining images, which were completely new to the AI program. Analysis was then compared with that of two senior orthopedic surgeons who reviewed the images at the same resolution as the network. The results showed that all networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view.
The final accuracy for fractures was estimated at 83% for the best performing network, which was equivalent to that of senior orthopedic surgeons when they were presented with images at the same resolution as the network. According to the researchers, AI has the potential to do even better with access to greater amounts of data, and they have therefore begun a follow-up study that will include Danderyd Hospital's entire orthopedic archive of over a million high-resolution radiographs. The study was published on July 6, 2017, in Acta Orthopaedica.
“Our study shows that AI networks can make assessments on a par with human specialists, and we hope that we'll be able to achieve even better results with high-res X-ray images,” said senior author Max Gordon, MD, assistant consultant in orthopedics at Danderyd Hospital. “If we can go back to our digital archives, we'll also be able to do extensive research on survival, the development of disease and work capacity - studies that have been impossible to do owing to the amount of data to process.”
Deep learning is part of a broader family of machine learning methods that is based on learning data representations, as opposed to task specific algorithms. It involves artificial neural network (ANN) algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.
Related Links:
Karolinska Institutet
Royal Institute of Technology
Danderyd Hospital
Latest Radiography News
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
- Advanced 3D Mammography Detects More Breast Cancers
Channels
MRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more