MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Cross-Sectional CT Imaging Could Predict Patient Longevity

By MedImaging International staff writers
Posted on 14 Jun 2017
Print article
Image: Images of the proximal left anterior descending coronary artery most strongly predict mortality (L) and survival (R) cases (Photo courtesy of the University of Adelaide).
Image: Images of the proximal left anterior descending coronary artery most strongly predict mortality (L) and survival (R) cases (Photo courtesy of the University of Adelaide).
A new study suggests that analysis of computerized tomography (CT) images of internal organs could predict 5-year mortality with almost 70% accuracy.

Researchers at the University of Adelaide (UA; Australia) and other institutions conducted proof-of-concept experiments to demonstrate how routinely acquired cross-sectional CT imaging may be used to predict patient longevity as a proxy for overall individual health and disease status, using computer image analysis techniques. To do so, they first gathered 15,957 CT images of seven different tissues from patients aged 60 and older; using logistic regression, they identified a number of image features that were linked to 5-year mortality.

Based on the human-defined image features, they then used machine learning and a range of radiomic classifier models that included convolutional neural network random forests, support vector machines, and boosted tree algorithms in order to teach a computer to make 5-year mortality predictions. They found that as expected, the random forest model performed the best on the human-defined feature classifiers. An analysis showed the results were comparable to clinical methods for longevity prediction. The study was published on May 10, 2017, in Nature Scientific Reports.

“Recent advances in the field of medical image analysis have shown that machine-detectable image features can approximate the descriptive power of biopsy, microscopy, and even DNA analysis for a number of pathologies,” concluded lead author Luke Oakden-Rayner, PhD, of the UA School of Public Health, and colleagues. “Instead of focusing on diagnosing diseases, the automated systems can predict medical outcomes in a way that doctors are not trained to do, by incorporating large volumes of data and detecting subtle patterns.”

Deep learning, a computer learning method which automatically discovers visual features that are suited to a specific task through a process of optimization, has rapidly overtaken more traditional methods in many computer vision tasks, such as image recognition and segmentation, and have approached or even surpassed human level capabilities for complex “real-world” tasks such as image recognition, speech recognition, natural language processing, complex game playing, and more.

Related Links:
University of Adelaide

New
Cylindrical Water Scanning System
SunSCAN 3D
3T MRI Scanner
MAGNETOM Cima.X
Silver Member
X-Ray QA Meter
T3 AD Pro
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more