Fiberoptic Probe Aids Endoscope Cancer Diagnosis
By MedImaging International staff writers Posted on 22 May 2017 |

Image: A scanning electron micrograph (SEM) of the imaging fiber (a), and at X100 magnification (b) (Photo courtesy of IPTH).
A compact fiber optic probe uses multiple nonlinear imaging techniques to identify cancer without the need for tissue staining, according to a new study.
Developed by researchers at the Leibniz Institute of Photonic Technology, and Friedrich-Schiller University, the new multimodal probe is based on a gradient index (GRIN) lens design and a multi-core fiber supplying the excitation laser light. The probe enables the simultaneous recording of several nonlinear imaging modalities for biomedical applications, such as coherent anti-stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited auto-fluorescence (TPEF).
Compared to traditional complex spherical lenses, GRIN lenses can be miniaturized to less than two mm because they focus light through constant refractive index changes within the lens material itself. With no moving parts or electric power required, the multi-core fiber can preserve the spatial relationship between entrance and output, allowing the ultrafast laser scanning procedure to be shifted from the distal to the proximal end of the probe. The generated signals can be collected and transferred to a detection setup in the probe head. The study describing the new probe was published in the May 2017 issue of Optica.
“Compared to other endoscopic nonlinear imaging approaches, our fiber probe stands out due to its simplicity. Since no moving parts are incorporated in the probe head, possible misalignments in the optics are limited and the probe’s overall lifetime is increased,” said lead author Professor Jürgen Popp, PhD, scientific director of IPTH. “We hope that, one day, multimodal endoscopic imaging techniques could help doctors make quick decisions during surgery, without the need for taking biopsies, using staining treatments, or performing complex histopathological procedures.”
GRIN lenses are generally used to collimate or reimage the output of a fiber. Typical applications include coupling the output of diode lasers into fibers, focusing laser light onto a detector, or collimating laser light. GRIN lenses do not require an air gap to function since the operation of the lens is due to varying indices in the lens itself, rather than the difference in indices between the air and lens. Additionally, in a GRIN lens, all optical paths are the same due to the radially varying refractive index, in contrast to a spherical or aspheric lens.
Developed by researchers at the Leibniz Institute of Photonic Technology, and Friedrich-Schiller University, the new multimodal probe is based on a gradient index (GRIN) lens design and a multi-core fiber supplying the excitation laser light. The probe enables the simultaneous recording of several nonlinear imaging modalities for biomedical applications, such as coherent anti-stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited auto-fluorescence (TPEF).
Compared to traditional complex spherical lenses, GRIN lenses can be miniaturized to less than two mm because they focus light through constant refractive index changes within the lens material itself. With no moving parts or electric power required, the multi-core fiber can preserve the spatial relationship between entrance and output, allowing the ultrafast laser scanning procedure to be shifted from the distal to the proximal end of the probe. The generated signals can be collected and transferred to a detection setup in the probe head. The study describing the new probe was published in the May 2017 issue of Optica.
“Compared to other endoscopic nonlinear imaging approaches, our fiber probe stands out due to its simplicity. Since no moving parts are incorporated in the probe head, possible misalignments in the optics are limited and the probe’s overall lifetime is increased,” said lead author Professor Jürgen Popp, PhD, scientific director of IPTH. “We hope that, one day, multimodal endoscopic imaging techniques could help doctors make quick decisions during surgery, without the need for taking biopsies, using staining treatments, or performing complex histopathological procedures.”
GRIN lenses are generally used to collimate or reimage the output of a fiber. Typical applications include coupling the output of diode lasers into fibers, focusing laser light onto a detector, or collimating laser light. GRIN lenses do not require an air gap to function since the operation of the lens is due to varying indices in the lens itself, rather than the difference in indices between the air and lens. Additionally, in a GRIN lens, all optical paths are the same due to the radially varying refractive index, in contrast to a spherical or aspheric lens.
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
Clinical ultrasound, commonly used in pregnancy scans, provides real-time images of body structures. It is one of the most widely used imaging techniques in medicine, but until recently, it had little... Read more
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more