Residual Gadolinium May Persist in Brain for Years
By MedImaging International staff writers Posted on 29 Dec 2016 |

Image: Evidence of residual gadolinium in the brain (Photo courtesy of Emanuel Kanal/UPMC).
New studies reveal that gadolinium based contrast agents (GBCA) used in magnetic resonance imaging (MRI) exams may remain in the brain for years, but the long-term effects are unknown.
A series of three recent studies raise new questions about residual gadolinium concentrations in the brains of patients with no history of kidney disease. The first, conducted at Teikyo University (Tokyo, Japan), examined brain tissues from five autopsied patients who had undergone multiple GBCA MRI exams and five patients with no gadolinium history. The study, published in the November 2016 issue of the Japanese Journal of Radiology, found that even in patients without severe renal dysfunction, gadolinium accumulated in the brain.
The findings of the Japanese study lend support to the results of a study at the Mayo Clinic (Rochester, MN, USA), published in the March 2016 issue of Radiology, which showed residual gadolinium deposits present in the postmortem brains of 13 patients who had undergone at least four GBCA contrast MRI exams. Neither the Teikyo University nor the Mayo clinic study was able to identify whether the residual gadolinium was in free or chelated form.
A third study, by the University of Heidelberg (Germany), published in the June 2015 issue of Radiology, retrospectively looked at two groups of 50 patients who had undergone at least six MRI exams, suggests that the molecular structure of the gadolinium contrast agent may play a role in retention. There are two structurally distinct categories of GBCA: linear and macrocyclic. In the macrocyclic structure, the gadolinium is bound more tightly to the chelating agent and, therefore, less likely to release free gadolinium into the body.
“We now have clear evidence that the administration of various gadolinium-based contrast agents results in notably varied levels of accumulation of residual gadolinium in the brain. What we still don’t know is the clinical significance, if any, of this observation,” commented professor of radiology and neuroradiology Emanuel Kanal, MD, director of magnetic resonance services at University of Pittsburgh Medical Center (UPMC, PA, USA). “We cannot unnecessarily deprive our patients of crucial, even life-saving medical data from gadolinium contrast-enhanced MRI. Nor can we ignore these new findings and continue prescribing them as we have until now, without change.”
Gadolinium--a rare earth heavy metal--is used for enhancement during MRI. Neurotoxic effects have been seen in animals and when a GBCA is given intrathecally in humans. On its own, gadolinium can be toxic; therefore, when used in contrast agents, gadolinium is bonded with a molecule called a chelating agent, which controls the distribution of gadolinium within the body. In July 2015, the U.S. Food and Drug Administration (FDA) stated that it was unknown whether gadolinium deposits in the brain were harmful.
Related Links:
Teikyo University
Mayo Clinic
University of Heidelberg
University of Pittsburgh Medical Center
A series of three recent studies raise new questions about residual gadolinium concentrations in the brains of patients with no history of kidney disease. The first, conducted at Teikyo University (Tokyo, Japan), examined brain tissues from five autopsied patients who had undergone multiple GBCA MRI exams and five patients with no gadolinium history. The study, published in the November 2016 issue of the Japanese Journal of Radiology, found that even in patients without severe renal dysfunction, gadolinium accumulated in the brain.
The findings of the Japanese study lend support to the results of a study at the Mayo Clinic (Rochester, MN, USA), published in the March 2016 issue of Radiology, which showed residual gadolinium deposits present in the postmortem brains of 13 patients who had undergone at least four GBCA contrast MRI exams. Neither the Teikyo University nor the Mayo clinic study was able to identify whether the residual gadolinium was in free or chelated form.
A third study, by the University of Heidelberg (Germany), published in the June 2015 issue of Radiology, retrospectively looked at two groups of 50 patients who had undergone at least six MRI exams, suggests that the molecular structure of the gadolinium contrast agent may play a role in retention. There are two structurally distinct categories of GBCA: linear and macrocyclic. In the macrocyclic structure, the gadolinium is bound more tightly to the chelating agent and, therefore, less likely to release free gadolinium into the body.
“We now have clear evidence that the administration of various gadolinium-based contrast agents results in notably varied levels of accumulation of residual gadolinium in the brain. What we still don’t know is the clinical significance, if any, of this observation,” commented professor of radiology and neuroradiology Emanuel Kanal, MD, director of magnetic resonance services at University of Pittsburgh Medical Center (UPMC, PA, USA). “We cannot unnecessarily deprive our patients of crucial, even life-saving medical data from gadolinium contrast-enhanced MRI. Nor can we ignore these new findings and continue prescribing them as we have until now, without change.”
Gadolinium--a rare earth heavy metal--is used for enhancement during MRI. Neurotoxic effects have been seen in animals and when a GBCA is given intrathecally in humans. On its own, gadolinium can be toxic; therefore, when used in contrast agents, gadolinium is bonded with a molecule called a chelating agent, which controls the distribution of gadolinium within the body. In July 2015, the U.S. Food and Drug Administration (FDA) stated that it was unknown whether gadolinium deposits in the brain were harmful.
Related Links:
Teikyo University
Mayo Clinic
University of Heidelberg
University of Pittsburgh Medical Center
Latest Radiography News
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
Channels
MRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more