Google DeepMind to Explore Streamlining Radiotherapy Planning
By MedImaging International staff writers Posted on 05 Oct 2016 |

Image: Google\'s DeepMind has the capacity to build an artificial intelligence computer that mimics the human brain (Photo courtesy of Google DeepMind).
A collaboration between Google DeepMind (London, United Kingdom) and England’s National Health Service (NHS, London) will evaluate the potential for machine learning in making radiotherapy (RT) planning more efficient.
The collaboration will be through a partnership with University College London Hospital (UCLH; United Kingdom), and will involve analysis of many as 700 former head and neck cancer patients, with the hope that artificial intelligence (AI) machine learning could decrease segmentation process time from four hours to just one. According to DeepMind, the project could also lead to the development of a RT segmentation algorithm with potential applications beyond head and neck cancers.
“Developing machine learning which can automatically differentiate between cancerous and healthy tissue on radiotherapy scans will assist clinicians in planning radiotherapy treatment,” said Yen-Ching Chang, MD, clinical lead for radiotherapy at UCLH. “This has the potential to free up clinicians to spend even more time on patient care, education and research, all of which would be to the benefit of our patients and the populations we serve.”
“This real-world application of artificial intelligence technology is exactly why we set up DeepMind. We’re incredibly excited to be working with the radiotherapy team at UCLH to explore how AI can help to reduce the time it takes to plan radiotherapy treatment for head and neck cancer patients,” said Mustafa Suleyman, co-founder and head of applied AI at Google DeepMind. “We hope this work could lead to real benefits for cancer patients across the country and for the clinicians who treat them.”
DeepMind is a AI company founded in September 2010 which created a neural network that can able to access an external memory like a conventional Turing machine, resulting in a computer that mimics the short-term memory of the human brain; it was acquired by Google in 2014. In July 2016, Google DeepMind partnered with Moorfields Eye Hospital (London, United Kingdom) in a project designed to use AI for the early detection and treatment of preventable eye diseases by analyzing retinal scans.
Related Links:
Google DeepMind
National Health Service
University College London Hospital
The collaboration will be through a partnership with University College London Hospital (UCLH; United Kingdom), and will involve analysis of many as 700 former head and neck cancer patients, with the hope that artificial intelligence (AI) machine learning could decrease segmentation process time from four hours to just one. According to DeepMind, the project could also lead to the development of a RT segmentation algorithm with potential applications beyond head and neck cancers.
“Developing machine learning which can automatically differentiate between cancerous and healthy tissue on radiotherapy scans will assist clinicians in planning radiotherapy treatment,” said Yen-Ching Chang, MD, clinical lead for radiotherapy at UCLH. “This has the potential to free up clinicians to spend even more time on patient care, education and research, all of which would be to the benefit of our patients and the populations we serve.”
“This real-world application of artificial intelligence technology is exactly why we set up DeepMind. We’re incredibly excited to be working with the radiotherapy team at UCLH to explore how AI can help to reduce the time it takes to plan radiotherapy treatment for head and neck cancer patients,” said Mustafa Suleyman, co-founder and head of applied AI at Google DeepMind. “We hope this work could lead to real benefits for cancer patients across the country and for the clinicians who treat them.”
DeepMind is a AI company founded in September 2010 which created a neural network that can able to access an external memory like a conventional Turing machine, resulting in a computer that mimics the short-term memory of the human brain; it was acquired by Google in 2014. In July 2016, Google DeepMind partnered with Moorfields Eye Hospital (London, United Kingdom) in a project designed to use AI for the early detection and treatment of preventable eye diseases by analyzing retinal scans.
Related Links:
Google DeepMind
National Health Service
University College London Hospital
Latest Nuclear Medicine News
- Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
- New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
Channels
Radiography
view channel
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read more
AI Detects Hidden Heart Disease in Existing CT Chest Scans
Coronary artery calcium (CAC) is a major indicator of cardiovascular risk, but its assessment typically requires a specialized “gated” CT scan that synchronizes with the heartbeat. In contrast, most chest... Read moreMRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more