X-ray Technique Visualizes Microscopic Structures in Brain
By MedImaging International staff writers Posted on 29 Sep 2016 |

Image: The surface representation of a Purkinje cell with the main part of its dendritic tree (Photo courtesy of the University of Basel).
A novel X-ray imaging technique can be used to identify individual Purkinje cells in the cerebellum, according to a new study.
Researchers at the University of Basel (UB; Switzerland) and University Hospital of Basel (Switzerland) have developed a specific mathematical filter for use with X-ray phase tomography that can visualize a volume of up to 43 mm3 of human post mortem or biopsy brain samples in three dimensions (3D), with automatic cell feature quantification at isotropic resolution in a label-free manner. The researchers used synchrotron radiation to determine local phase shifts, which provided better contrast than conventional X-ray techniques that rely on the attenuation of X-rays.
Using the technique, they succeeded in setting a pixel size of 0.45 micrometers, a hundred times smaller than the diameter of a human hair. The researchers then demonstrated the method on the cerebellum, automatically identifying 5,000 Purkinje cells with an error of less than 5%, and determined that the local surface density was 165 cells per mm2, on average. They also used the 3D data to segment sub-cellular structures, including the dendritic tree and Purkinje cell nucleoli, without the need for dedicated staining. The study was published in the September 2016 issue of Scientific Reports.
“Detailed insight into the cellular structures of the cerebellum enables, for example, a better description of motor function, coordination, and balance regulation. Moreover, morphological changes due to disease such as neurodegeneration should become better recognized on the basis of the 3D imaging data,” concluded lead author Simone Hieber, PhD, of the UB department of biomedical engineering, and colleagues. “In combination with the specific software, this approach could contribute to a better understanding and treatment of neurodegenerative diseases.”
Purkinje cells are large neurons with many branching extensions that are found in the cortex of the cerebellum, and which play a fundamental role in controlling motor movement. They are characterized by cell bodies that are flask-like in shape, by numerous branching dendrites, and by a single long axon. Purkinje cells release gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits transmission of nerve impulses, which allows the cells to regulate and coordinate motor movements. The cells were first discovered in 1837 by Czech physiologist Jan Evangelista Purkinje.
Related Links:
University of Basel
University Hospital of Basel
Researchers at the University of Basel (UB; Switzerland) and University Hospital of Basel (Switzerland) have developed a specific mathematical filter for use with X-ray phase tomography that can visualize a volume of up to 43 mm3 of human post mortem or biopsy brain samples in three dimensions (3D), with automatic cell feature quantification at isotropic resolution in a label-free manner. The researchers used synchrotron radiation to determine local phase shifts, which provided better contrast than conventional X-ray techniques that rely on the attenuation of X-rays.
Using the technique, they succeeded in setting a pixel size of 0.45 micrometers, a hundred times smaller than the diameter of a human hair. The researchers then demonstrated the method on the cerebellum, automatically identifying 5,000 Purkinje cells with an error of less than 5%, and determined that the local surface density was 165 cells per mm2, on average. They also used the 3D data to segment sub-cellular structures, including the dendritic tree and Purkinje cell nucleoli, without the need for dedicated staining. The study was published in the September 2016 issue of Scientific Reports.
“Detailed insight into the cellular structures of the cerebellum enables, for example, a better description of motor function, coordination, and balance regulation. Moreover, morphological changes due to disease such as neurodegeneration should become better recognized on the basis of the 3D imaging data,” concluded lead author Simone Hieber, PhD, of the UB department of biomedical engineering, and colleagues. “In combination with the specific software, this approach could contribute to a better understanding and treatment of neurodegenerative diseases.”
Purkinje cells are large neurons with many branching extensions that are found in the cortex of the cerebellum, and which play a fundamental role in controlling motor movement. They are characterized by cell bodies that are flask-like in shape, by numerous branching dendrites, and by a single long axon. Purkinje cells release gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits transmission of nerve impulses, which allows the cells to regulate and coordinate motor movements. The cells were first discovered in 1837 by Czech physiologist Jan Evangelista Purkinje.
Related Links:
University of Basel
University Hospital of Basel
Latest Radiography News
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
- Advanced 3D Mammography Detects More Breast Cancers
Channels
MRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more