Functional Brain Scans may Help Detect Autism in Adults
|
By MedImaging International staff writers Posted on 04 May 2016 |

Image: A map of the brain helps distinguish patients diagnosed with ASD (Photo courtesy of Nature Communications).
An innovative computer algorithm could be the key to implement brain scans as a means to identify autism spectrum disorder (ASD), according to a new study.
Developed at Advanced Telecommunications Research Institute International (Kyoto, Japan), and Brown University (Providence, RI, USA), the neuroimaging-based algorithm can classify different subject sets using functional magnetic resonance imaging (fMRI) to analyze thousands of brain network functional connections (FCs). When the researchers examined the scans of people with and without ASD, the algorithm found 16 key interregional FCs that allowed it to identify with high accuracy those who had been diagnosed with autism, and those who had not.
The neuroimaging classifier, which blends two machine-learning algorithms, was first developed with the aid of 181 adult volunteers at three sites in Japan, and was then applied to a group of 88 American adults at seven sites; all the study volunteers with autism diagnoses had no intellectual disability. The classifier worked well in each population, averaging 85% accuracy among the Japanese volunteers and 75% accuracy in the Americans. The researchers calculated that the probability of such a degree of cross-population performance purely by chance was 1.4 in a million.
To further validate the classifier, the researchers examined how it related to the Autism Diagnostic Observation Schedule (ADOS), a clinical tool based not on markers of biology or physiology, but instead on a doctor’s interviews and observations of behavior. They found that the 16 FCs identified by the classifier related to attributes of importance in ADOS. They also found that 41% of the specific brain regions in which the 16 FCs resided were within the cingulo-opercular network, which participates in the conceiving of other people, face processing, and emotional processing. The study was published on April 14, 2016, in Nature Communications.
“The MRI scans required to gather the data were simple. Subjects only needed to spend about 10 minutes in the machine, and didn’t have to perform any special tasks; they just had to stay still and rest,” said co-corresponding author Professor Yuka Sasaki, PhD, of Brown University. “Despite that simplicity, and even though the classifier performed unprecedentedly well as a matter of research, it is not yet ready to be a clinical tool. The accuracy level needs to be much higher; 80% accuracy may not be useful in the real world.”
The researchers clarified that the developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls, but moderately distinguishes patients with schizophrenia from their controls.
Related Links:
Advanced Telecommunications Research Institute International
Brown University
Developed at Advanced Telecommunications Research Institute International (Kyoto, Japan), and Brown University (Providence, RI, USA), the neuroimaging-based algorithm can classify different subject sets using functional magnetic resonance imaging (fMRI) to analyze thousands of brain network functional connections (FCs). When the researchers examined the scans of people with and without ASD, the algorithm found 16 key interregional FCs that allowed it to identify with high accuracy those who had been diagnosed with autism, and those who had not.
The neuroimaging classifier, which blends two machine-learning algorithms, was first developed with the aid of 181 adult volunteers at three sites in Japan, and was then applied to a group of 88 American adults at seven sites; all the study volunteers with autism diagnoses had no intellectual disability. The classifier worked well in each population, averaging 85% accuracy among the Japanese volunteers and 75% accuracy in the Americans. The researchers calculated that the probability of such a degree of cross-population performance purely by chance was 1.4 in a million.
To further validate the classifier, the researchers examined how it related to the Autism Diagnostic Observation Schedule (ADOS), a clinical tool based not on markers of biology or physiology, but instead on a doctor’s interviews and observations of behavior. They found that the 16 FCs identified by the classifier related to attributes of importance in ADOS. They also found that 41% of the specific brain regions in which the 16 FCs resided were within the cingulo-opercular network, which participates in the conceiving of other people, face processing, and emotional processing. The study was published on April 14, 2016, in Nature Communications.
“The MRI scans required to gather the data were simple. Subjects only needed to spend about 10 minutes in the machine, and didn’t have to perform any special tasks; they just had to stay still and rest,” said co-corresponding author Professor Yuka Sasaki, PhD, of Brown University. “Despite that simplicity, and even though the classifier performed unprecedentedly well as a matter of research, it is not yet ready to be a clinical tool. The accuracy level needs to be much higher; 80% accuracy may not be useful in the real world.”
The researchers clarified that the developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls, but moderately distinguishes patients with schizophrenia from their controls.
Related Links:
Advanced Telecommunications Research Institute International
Brown University
Latest MRI News
- Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Channels
Radiography
view channel
X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
Detecting early-stage cancer or subtle changes deep inside tissues has long challenged conventional X-ray systems, which rely only on how structures absorb radiation. This limitation keeps many microstructural... Read more
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreGeneral/Advanced Imaging
view channel
3D Scanning Approach Enables Ultra-Precise Brain Surgery
Precise navigation is critical in neurosurgery, yet even small alignment errors can affect outcomes when operating deep within the brain. A new 3D surface-scanning approach now provides a radiation-free... Read more
AI Tool Improves Medical Imaging Process by 90%
Accurately labeling different regions within medical scans, a process known as medical image segmentation, is critical for diagnosis, surgery planning, and research. Traditionally, this has been a manual... Read more
New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more
AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
In pancreatic cancer, detecting whether the disease has spread to other organs is critical for determining whether surgery is appropriate. If metastasis is present, surgery is not recommended, yet current... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







