More Accurate PET Imaging Biomarker Developed for Detecting Prostate Cancer
By MedImaging International staff writers Posted on 01 Feb 2016 |
Positron Emission Tomography (PET) imaging combined with a new experimental agent can detect 97% of prostate cancers—more than those detected by pathologists when examining prostate glands that were excised.
The findings were published online in the journal Urology. The new method is better at detecting prostate cancer than any radiographical, biopsy or blood test currently in use. The study cohort consisted of 25 men suffering from prostate cancer who opted to have their prostate glands removed in a radical prostatectomy operation. Before the operation the men underwent the new imaging test.
The researchers from the Thomas Jefferson University (Philadelphia PA, USA) compared the results of the imaging test, and the examination by the pathologists. The imaging test uses a new biomarker, 64Cu-TP3805, and is administered to patients intravenously before they undergo a PET/CT (Computed Tomography) scan. The biomarker attaches itself to VPAC1 receptors on the surface of cancer cells. In addition, a radiation emitting copper peptide, Cu-64, is hooked onto the biomarker TP3805. PET Imaging can then be used to find where in the prostate the 64Cu-TP3805 has attached itself to cancer cells. The radioactive agent Cu-64 decays rapidly and has a lower whole-body radiation risk than a CT scan.
The results of the study showed that the new test identified 97%, or 105 out of 107 cancerous lesions found by the pathologists in the excised prostate glands, and nine additional lesions that were not found in the pathologic exam. The researchers also successfully investigated the use of 64Cu-TP3805 in human breast cancer, and are investigating the use of the test in animal models of bladder and lung cancer.
Senior investigator of the study, Mathew Thakur, PhD, professor of Radiology at the Thomas Jefferson University Sidney Kimmel Medical College, said, “There is a critical need for an accurate method to detect and stage prostate cancer so that the disease can be precisely managed. We believe this method has that potential. Current tests now used are inexact because they all require an invasive biopsy and these costly biopsies—which have the potential for complications—can miss 66% of cancers. It is hard to believe that hundreds of thousands of patients in the US have been relying on biopsies to dictate their treatment, when two-thirds of these tests do not accurately reflect what is happening inside the prostate. Results of this study exceeded our goal of detecting 80% of cancers seen pathologically, and provided us with real insights into how prostate cancer can be accurately imaged. A larger study that confirms these exciting findings should be conducted.”
Related Links:
Thomas Jefferson University
The findings were published online in the journal Urology. The new method is better at detecting prostate cancer than any radiographical, biopsy or blood test currently in use. The study cohort consisted of 25 men suffering from prostate cancer who opted to have their prostate glands removed in a radical prostatectomy operation. Before the operation the men underwent the new imaging test.
The researchers from the Thomas Jefferson University (Philadelphia PA, USA) compared the results of the imaging test, and the examination by the pathologists. The imaging test uses a new biomarker, 64Cu-TP3805, and is administered to patients intravenously before they undergo a PET/CT (Computed Tomography) scan. The biomarker attaches itself to VPAC1 receptors on the surface of cancer cells. In addition, a radiation emitting copper peptide, Cu-64, is hooked onto the biomarker TP3805. PET Imaging can then be used to find where in the prostate the 64Cu-TP3805 has attached itself to cancer cells. The radioactive agent Cu-64 decays rapidly and has a lower whole-body radiation risk than a CT scan.
The results of the study showed that the new test identified 97%, or 105 out of 107 cancerous lesions found by the pathologists in the excised prostate glands, and nine additional lesions that were not found in the pathologic exam. The researchers also successfully investigated the use of 64Cu-TP3805 in human breast cancer, and are investigating the use of the test in animal models of bladder and lung cancer.
Senior investigator of the study, Mathew Thakur, PhD, professor of Radiology at the Thomas Jefferson University Sidney Kimmel Medical College, said, “There is a critical need for an accurate method to detect and stage prostate cancer so that the disease can be precisely managed. We believe this method has that potential. Current tests now used are inexact because they all require an invasive biopsy and these costly biopsies—which have the potential for complications—can miss 66% of cancers. It is hard to believe that hundreds of thousands of patients in the US have been relying on biopsies to dictate their treatment, when two-thirds of these tests do not accurately reflect what is happening inside the prostate. Results of this study exceeded our goal of detecting 80% of cancers seen pathologically, and provided us with real insights into how prostate cancer can be accurately imaged. A larger study that confirms these exciting findings should be conducted.”
Related Links:
Thomas Jefferson University
Latest Nuclear Medicine News
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more