High Magnetic Field MRI Technology Provides Comprehensive Analysis of Strokes
By MedImaging International staff writers Posted on 21 Oct 2014 |

Image: MagLab’s 900 MHz magnet (Photo courtesy of FSU – Florida State University).
A new, novel way to categorize the severity of a stroke, help in diagnosis, and assesse potential treatments has been demonstrated by US researchers.
“Stroke affects millions of adults and children worldwide,” said Dr. Sam Grant, researcher and associate professor of chemical and biomedical engineering at the Florida State University-based National High Magnetic Field Laboratory (FAMU-FSU; MagLab; Tallahassee, FL, USA) and the FSU College of Engineering. “This research offers a new technique for the chemical analysis of metabolites during stroke and a means of evaluating dynamic changes in cell processes and size in living tissue.”
The research was described in two articles, one published October 9, 2014, in the journal Nature Communications, and the other published September 10, 2014, in the Journal of Cerebral Blood Flow and Metabolism.
The new technique is a way of narrowly applying energy to the metabolites of a specimen exposed to a very high magnetic field. By selectively “exciting” these metabolites and studying their distribution and confinement in brain tissue, the research team can investigate the metabolic microenvironment and tell whether cells were shrinking or expanding, a vital application for determining the severity of stroke, according to Dr. Grant.
These data could help clinicians to better treat patients. “Strokes cause an interruption of blood and oxygen to flow to the brain,” explained Jens Rosenberg, another MagLab researcher and one of Grant’s coauthors. “Through this research, we can see how neurons and other neural cells respond to the disruption of blood flow after stroke and use that information to better understand the full impacts of stroke.”
The MagLab’s flagship 900 MHz ultra-wide bore nuclear magnetic resonance (NMR) magnet system was a vital element to the research. Utilizing this powerful magnet, the researchers, which included scientists from the Champaulimaud Center (Lisbon, Portugal) and the Weizmann Institute of Science (Rehovot, Israel), were able to capture localized chemical signatures of metabolites from 125-microliter volumes within the brain with high sensitivity and fidelity in six seconds.
Typical magnetic resonance imaging (MRI) scans performed at hospitals or physician offices measure around 1.5–3 Tesla (the unit of magnetic field strength), while the 900 MHz measures an enormous 21.1 Tesla, providing at least seven times the sensitivity. “This very high field, coupled with the RF [radiofrequency] pulse sequence design by our collaborators and homebuilt RF probes offer a unique noninvasive way of evaluating stroke evolution and potential treatments,” Dr. Rosenberg said.
Moreover, the investigators envision exciting possibilities to use this technique to additionally study devastating disorders. “By evaluating spectral regions previously undetectable, we hope to fingerprint certain diseases, like ischemic stroke, so that we can identify new characteristics that are specific to pathological conditions at the metabolic level in vivo,” Dr. Grant said. “There is a lot of work to be done to identify these dynamic changes and decide when and how our treatments can be most effective.”
Additional studies on metabolites using this technique could also be used for analysis of neurological disorders such as dementia, schizophrenia, Lou Gehrig’s, Parkinson’s, Alzheimer’s and Huntington’s diseases.
Related Links:
Florida State University-based National High Magnetic Field Laboratory
Champaulimaud Center
Weizmann Institute of Science
“Stroke affects millions of adults and children worldwide,” said Dr. Sam Grant, researcher and associate professor of chemical and biomedical engineering at the Florida State University-based National High Magnetic Field Laboratory (FAMU-FSU; MagLab; Tallahassee, FL, USA) and the FSU College of Engineering. “This research offers a new technique for the chemical analysis of metabolites during stroke and a means of evaluating dynamic changes in cell processes and size in living tissue.”
The research was described in two articles, one published October 9, 2014, in the journal Nature Communications, and the other published September 10, 2014, in the Journal of Cerebral Blood Flow and Metabolism.
The new technique is a way of narrowly applying energy to the metabolites of a specimen exposed to a very high magnetic field. By selectively “exciting” these metabolites and studying their distribution and confinement in brain tissue, the research team can investigate the metabolic microenvironment and tell whether cells were shrinking or expanding, a vital application for determining the severity of stroke, according to Dr. Grant.
These data could help clinicians to better treat patients. “Strokes cause an interruption of blood and oxygen to flow to the brain,” explained Jens Rosenberg, another MagLab researcher and one of Grant’s coauthors. “Through this research, we can see how neurons and other neural cells respond to the disruption of blood flow after stroke and use that information to better understand the full impacts of stroke.”
The MagLab’s flagship 900 MHz ultra-wide bore nuclear magnetic resonance (NMR) magnet system was a vital element to the research. Utilizing this powerful magnet, the researchers, which included scientists from the Champaulimaud Center (Lisbon, Portugal) and the Weizmann Institute of Science (Rehovot, Israel), were able to capture localized chemical signatures of metabolites from 125-microliter volumes within the brain with high sensitivity and fidelity in six seconds.
Typical magnetic resonance imaging (MRI) scans performed at hospitals or physician offices measure around 1.5–3 Tesla (the unit of magnetic field strength), while the 900 MHz measures an enormous 21.1 Tesla, providing at least seven times the sensitivity. “This very high field, coupled with the RF [radiofrequency] pulse sequence design by our collaborators and homebuilt RF probes offer a unique noninvasive way of evaluating stroke evolution and potential treatments,” Dr. Rosenberg said.
Moreover, the investigators envision exciting possibilities to use this technique to additionally study devastating disorders. “By evaluating spectral regions previously undetectable, we hope to fingerprint certain diseases, like ischemic stroke, so that we can identify new characteristics that are specific to pathological conditions at the metabolic level in vivo,” Dr. Grant said. “There is a lot of work to be done to identify these dynamic changes and decide when and how our treatments can be most effective.”
Additional studies on metabolites using this technique could also be used for analysis of neurological disorders such as dementia, schizophrenia, Lou Gehrig’s, Parkinson’s, Alzheimer’s and Huntington’s diseases.
Related Links:
Florida State University-based National High Magnetic Field Laboratory
Champaulimaud Center
Weizmann Institute of Science
Latest MRI News
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more