Personalized Intraoperative Radiation Therapy During Cancer Surgery
By MedImaging International staff writers Posted on 09 Sep 2014 |
A New York City Medical Center is finding new ways to employ personalized, internal radiation delivered in the operating room right after a cancer tumor is removed. Intraoperative radiotherapy (IORT) represents an effort to reduce the risk of a recurrence, lessen the duration of standard postoperative external radiation, and reduce the risk to healthy tissue associated with external radiation.
NewYork-Presbyterian Hospital Medical Center (New York, NY, USA), in 2012, became the first hospital in New York City to offer IORT to women with certain breast cancers. In this therapy, a spherical applicator is used to deliver a single, even dose of radiation to the inside surface of a rounded cavity after a lumpectomy.
Now, physicians at NewYork-Presbyterian/Columbia are expanding these innovating efforts by offering IORT for other types of cancer in the abdomen and pelvis. Unlike that in the breast, the tumor bed in the abdomen and pelvis may not be as precisely defined after surgery, and several sites at risk for recurrence may need to be treated.
Earlier in 2014, in the hospital’s first case of using IORT for a cancer other than breast cancer, a woman with recurrent colon cancer in the pelvic cavity needed to have treatment to separate areas of her body. The surgeon, Ravi Kiran, MD, a professor of surgery (in epidemiology) and chief of colorectal surgery at NewYork-Presbyterian/Columbia, removed the tumor, but could not cut too close to major blood vessels and other organs. Because of the fundamental limitations of surgery, and because the patient had already received a high lifetime cumulative dose of radiation therapy in earlier treatments, Dr. Kiran and Clifford Chao, MD, a professor of radiation oncology and chair of radiation oncology at NewYork-Presbyterian/Columbia, decided to use IORT to “mop up” any reamining tumor cells. Dr. Chao used a flat radiotherapy applicator to deliver radiation to areas close to blood vessels along the pelvic wall and a spherical applicator to treat a region lower in the pelvic cavity. “We also used a protective wrap, or draping, made of material that shields organs like the bowel or blood vessels from scatter radiation,” Dr. Chao said.
In a second procedure, which involved a 23-year-old woman with a bile duct tumor, two differently shaped applicators were used to deliver IORT to the retroperitoneal tissue after removal of the tumor and nearby lymph nodes. The surgery, performed by Tomoaki Kato, MD, a professor of surgical oncology and chief of abdominal organ transplantation at NewYork-Presbyterian/Columbia, was the first case in the United States to use Zeiss Intrabeam flat applicators after removal of a bile duct tumor. The flat applicator was used to deliver radiation to the surface where the retroperitoneal aortic lymph node had been. A sphere-shaped applicator was inserted into the right lobe of the liver near the hepatic artery, where the soft organ could completely surround the tiny globe and absorb a 20–30 minute, low-dose IORT session.
“Because of the way the tumor needs to be removed, or because the spaces between a tumor and large vessels and nerves are too small, microscopic lesions are more likely to be attached to the surface of blood vessels and nerves. IORT allows us to treat those areas and lower the risk of recurrence,” said Dr. Chao, who performed the radiation therapy procedure and is leading the hospital’s IORT efforts.
In a third patient, Jason Wright, MD, a professor of Women’s Health (in obstetrics and gynecology) and chief of gynecologic oncology at NewYork-Presbyterian/Columbia, used a similar approach to treat a gynecologic cancer, working with Dr. Chao. In specific breast cancer patients, IORT has eliminated an additional six to seven weeks of radiotherapy, and according to a 10-year randomized trial published in 2010, provided the same results as traditional full-breast radiation. Dr. Chao is hopeful that similar benefits will be seen in other types of cancer cases, and he sees this as another step toward customized cancer care.
“The possibilities are encouraging,” said Dr. Chao. “We could see patients ahead of time and then work with the surgeon to develop a personalized radiation treatment for the specific tumor. When you open up the abdomen to remove a tumor from the liver, bowel, or pancreas, the terrain of the surgical bed is a more open, uneven surface. So we need radiotherapy applicators that suit the specific anatomical terrain. In some areas of the body, the applicator could be a half sphere, an irregular shape for uneven surfaces, or a tiny device that fits into a small space where we have anatomic challenges. We can devise personalized therapy based on a patient’s specific anatomy.”
Dr. Chao is currently working with engineers and physicists from NewYork Presbyterian/Columbia and NewYork-Presbyterian/Weill Cornell Medical Center to design and develop applicators for colorectal, head and neck, lung, and gynecologic cancers.
Zeiss Intrabeam, developed by Carl Zeiss (Oberkochen, Germany), is a mobile radiation oncology platform that offers additional treatment options for a wide range of cancer types, through use of its US Food and Drug Administration (FDA)-cleared spherical, needle, flat, and surface applicators. Because of the low X-ray energy, Intrabeam does not require any complicated radiation shielding measures and is suitable even for mobile use.
Related Links:
NewYork-Presbyterian Hospital Medical Center
Carl Zeiss
NewYork-Presbyterian Hospital Medical Center (New York, NY, USA), in 2012, became the first hospital in New York City to offer IORT to women with certain breast cancers. In this therapy, a spherical applicator is used to deliver a single, even dose of radiation to the inside surface of a rounded cavity after a lumpectomy.
Now, physicians at NewYork-Presbyterian/Columbia are expanding these innovating efforts by offering IORT for other types of cancer in the abdomen and pelvis. Unlike that in the breast, the tumor bed in the abdomen and pelvis may not be as precisely defined after surgery, and several sites at risk for recurrence may need to be treated.
Earlier in 2014, in the hospital’s first case of using IORT for a cancer other than breast cancer, a woman with recurrent colon cancer in the pelvic cavity needed to have treatment to separate areas of her body. The surgeon, Ravi Kiran, MD, a professor of surgery (in epidemiology) and chief of colorectal surgery at NewYork-Presbyterian/Columbia, removed the tumor, but could not cut too close to major blood vessels and other organs. Because of the fundamental limitations of surgery, and because the patient had already received a high lifetime cumulative dose of radiation therapy in earlier treatments, Dr. Kiran and Clifford Chao, MD, a professor of radiation oncology and chair of radiation oncology at NewYork-Presbyterian/Columbia, decided to use IORT to “mop up” any reamining tumor cells. Dr. Chao used a flat radiotherapy applicator to deliver radiation to areas close to blood vessels along the pelvic wall and a spherical applicator to treat a region lower in the pelvic cavity. “We also used a protective wrap, or draping, made of material that shields organs like the bowel or blood vessels from scatter radiation,” Dr. Chao said.
In a second procedure, which involved a 23-year-old woman with a bile duct tumor, two differently shaped applicators were used to deliver IORT to the retroperitoneal tissue after removal of the tumor and nearby lymph nodes. The surgery, performed by Tomoaki Kato, MD, a professor of surgical oncology and chief of abdominal organ transplantation at NewYork-Presbyterian/Columbia, was the first case in the United States to use Zeiss Intrabeam flat applicators after removal of a bile duct tumor. The flat applicator was used to deliver radiation to the surface where the retroperitoneal aortic lymph node had been. A sphere-shaped applicator was inserted into the right lobe of the liver near the hepatic artery, where the soft organ could completely surround the tiny globe and absorb a 20–30 minute, low-dose IORT session.
“Because of the way the tumor needs to be removed, or because the spaces between a tumor and large vessels and nerves are too small, microscopic lesions are more likely to be attached to the surface of blood vessels and nerves. IORT allows us to treat those areas and lower the risk of recurrence,” said Dr. Chao, who performed the radiation therapy procedure and is leading the hospital’s IORT efforts.
In a third patient, Jason Wright, MD, a professor of Women’s Health (in obstetrics and gynecology) and chief of gynecologic oncology at NewYork-Presbyterian/Columbia, used a similar approach to treat a gynecologic cancer, working with Dr. Chao. In specific breast cancer patients, IORT has eliminated an additional six to seven weeks of radiotherapy, and according to a 10-year randomized trial published in 2010, provided the same results as traditional full-breast radiation. Dr. Chao is hopeful that similar benefits will be seen in other types of cancer cases, and he sees this as another step toward customized cancer care.
“The possibilities are encouraging,” said Dr. Chao. “We could see patients ahead of time and then work with the surgeon to develop a personalized radiation treatment for the specific tumor. When you open up the abdomen to remove a tumor from the liver, bowel, or pancreas, the terrain of the surgical bed is a more open, uneven surface. So we need radiotherapy applicators that suit the specific anatomical terrain. In some areas of the body, the applicator could be a half sphere, an irregular shape for uneven surfaces, or a tiny device that fits into a small space where we have anatomic challenges. We can devise personalized therapy based on a patient’s specific anatomy.”
Dr. Chao is currently working with engineers and physicists from NewYork Presbyterian/Columbia and NewYork-Presbyterian/Weill Cornell Medical Center to design and develop applicators for colorectal, head and neck, lung, and gynecologic cancers.
Zeiss Intrabeam, developed by Carl Zeiss (Oberkochen, Germany), is a mobile radiation oncology platform that offers additional treatment options for a wide range of cancer types, through use of its US Food and Drug Administration (FDA)-cleared spherical, needle, flat, and surface applicators. Because of the low X-ray energy, Intrabeam does not require any complicated radiation shielding measures and is suitable even for mobile use.
Related Links:
NewYork-Presbyterian Hospital Medical Center
Carl Zeiss
Read the full article by registering today, it's FREE!

Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
- Free digital version edition of Medical Imaging International sent by email on regular basis
- Free print version of Medical Imaging International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of Medical Imaging International in digital format
- Free Medical Imaging International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!

Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Radiography News
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
- Advanced 3D Mammography Detects More Breast Cancers
Channels
MRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more