We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Quantitative Ultrasound Shown to Optimize Assessment of Long Bone Fracture

By MedImaging International staff writers
Posted on 27 Aug 2014
Print article
Image: Fig. 1a and Fig. 1b depict the guided signals in the intact and fractured long bones, respectively. These images shows an (a) intact and (b) 1-mm width 100% depth fracture (Photo courtesy of Science China Press).
Image: Fig. 1a and Fig. 1b depict the guided signals in the intact and fractured long bones, respectively. These images shows an (a) intact and (b) 1-mm width 100% depth fracture (Photo courtesy of Science China Press).
Research has revealed that mode conversion of ultrasonic-guided waves can quantitatively indicate the fracture degree of long cortical bone, which may provide a new way of evaluating long bone fracture and monitor healing.

This study was published July 24, 2014, in the journal SCIENCE CHINA Physica, Mechanica & Astronomica. Prof. T.A. De-an, from School of Information Science and Technology at Fudan University (Shanghai, China) led the study, which quantitatively analyzed the impact of fracture width and depth on the amplitude of guided waves.

Bone fracture is a medical disorder in which bone discontinuity is created by stresses higher than the bone can bear. Statistical studies show that 5%–10% of the fractured patients are suffering healing complications. Fracture healing is a proliferative process, and full recovery can take up to three to five years. The pathology in the healing process is easily overlooked, leading to severe bone loss and secondary damage, impacting the physical condition of the patients. Therefore, early diagnosis of the healing problem is key to ensure the healing process. The accurate diagnosis and dynamic monitoring are essential for prompt treatment.

With the advantages of quantitative ultrasound (QUS), such as portability, inexpensive, and nonionizing radiation, ultrasonic guided waves can also detect the geometry of long cortical bone, (e.g., profile, thickness, and section) and measure the material parameters (e.g., BMD, porosity and Young’s modulus), which has attracted increasing attention. However, due to the little understood nature of ultrasound propagation in long cortical bones, ultrasonic-guided wave technology has not been widely applied to the clinical practice of the long bone fracture evaluation.

Numeric simulations are performed to analyze the guided waves propagation in the fractured long bone. The novelty of this study is the use of narrowband low-frequency ultrasound to avoid the multimode overlap. Only two fundamental guided modes, symmetric S0 and asymmetric A0, are excited, which simplifies the mode separation and quantitative determination. The impact of fracture width and depth on the amplitudes of each guided modes were quantitatively discussed in the article. The amplitude of the A0 mode is very sensitive to the width and depth variation. The ratio between the amplitudes of S0 and A0 is further proposed to be used in the evaluation of the fracture degree.

The mode conversion of the ultrasonic-guided waves can, therefore, characterize the changes in the fracture depth and fracture width and provide quantitative parameters fracture evaluation. The study may also be helpful to the ultrasound monitoring of long bone healing, according to the researchers.

Related Links:

Fudan University


X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultra-Flat DR Detector
meX+1717SCC
Diagnostic Ultrasound System
MS1700C
New
MRI Infusion Workstation
BeneFusion MRI Station

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more