Enhanced PET Imaging Radiotracers Designed for Better Tracking of Disease
By MedImaging International staff writers Posted on 09 Jun 2014 |
Scientists have developed a direct approach for making single enantiomer positron emission tomography (PET) tracers.
Small molecules containing a radioactive isotope of fluorine called 18F radiotracers are used to detect and track specific diseases in patients. When injected into the body, these molecules collect in specific targets, such as tumors, and can be visualized by their radioactive tag on a PET imaging scan. The 18F tags rapidly decay, therefore, no radioactivity remains after approximately one day.
But there are only a few strategies available for making 18F radiotracers. Furthermore, existing techniques tend to require harsh conditions that jumble the placement of a radiotracer’s more delicate chemical bonds. Researchers at Princeton University (Princeton, NJ, USA) reported that they now have a way to produce 18F radiotracers that avoids that problem. “It’s the first method to do enantio-selective carbon-18F bond formation,” said lead investigator Dr. Abigail Doyle, a Princeton associate professor of chemistry.
Radiotracers up to now have mostly been evaluated as mixtures of enantiomers. Enantiomers are molecules that are totally identical in composition but the arrangement of atoms at the chiral center are mirror images. A chiral center is an atom, typically carbon, which is connected to four different groups. “We know in biology, small molecule interactions with enzymes often depend on the 3D [three-dimensional] properties of the molecule. Being able to prepare the enantiomers of a given chiral tracer, in order to optimize which tracer has the best binding and imaging properties could be really useful,” Dr. Doyle said.
The researchers developed a cobalt fluoride catalyst—[18F](salen)CoF—to install the radioactive fluoride through the ring-opening reaction of epoxides. Their approach demonstrated excellent enantioselectivity for 11 substrates, five of which are known pre-clinical PET tracers. With this new method, researchers can now assess single enantiomers of existing or new PET radiotracers and evaluate if these compounds offer any benefits over the enantiomeric combinations. Eventually, the goal is to use this chemistry to identify a completely new PET radiotracer for imaging.
Currently, there are only four US Food and Drug Administration (FDA)-approved 18F radiotracers. One of the major limitations to discovering PET tracers is the fact that the only commercially available source of 18F is nucleophilic fluoride. Existing 18F sources are very basic, and during the process of making the 18F radiotracer, can cause the elimination of alcohol and amine groups and rearrange the groups around a chiral center in a process called racemization. Under Dr. Doyle’s less basic reaction conditions, even alcohols and secondary amines are tolerated and no racemization is seen.
“Forming carbon-fluorine bonds by nucleophilic fluoride is challenging. One typically needs to use high temperatures or else the reactions are too slow to permit radioisotope incorporation,” Dr. Doyle commented. “Whereas most reactions require temperatures greater than 100° Celsius, our reaction can be run at 50° Celsius.”
Small amounts of radioactivity were sufficient to develop the reaction at first but to perform imaging studies, larger amounts of radioactivity are necessary. “When you go to higher activity, that’s when you do automated chemistry in a hot cell, which is basically a block of lead so you get no exposure,” Dr. Doyle said.
To be efficient in an industrial environment, the chemistry needs to be converted from the laboratory to an automated hot cell. The researchers were given access to an automated hot cell nearby at Merck’s West Point (PA, USA) site. The whole process of radiolabeling takes about 30 to 45 minutes when it is automated. The set-up includes a robotic arm that delivers solutions to designated vials, a high-performance liquid chromatography (HPLC) system and a rotary evaporator, which are devices for the analysis and purification of the radiotracers.
“The catalyst is very robust and the fact that we can translate the reaction directly to the hot cell bodes very well for non-experts to be able to run these sorts of reactions,” Dr. Doyle concluded. “We demonstrated that the radioactivity is high enough that we could actually use it for imaging. That’s an exciting next step.”
Related Links:
Princeton University
Small molecules containing a radioactive isotope of fluorine called 18F radiotracers are used to detect and track specific diseases in patients. When injected into the body, these molecules collect in specific targets, such as tumors, and can be visualized by their radioactive tag on a PET imaging scan. The 18F tags rapidly decay, therefore, no radioactivity remains after approximately one day.
But there are only a few strategies available for making 18F radiotracers. Furthermore, existing techniques tend to require harsh conditions that jumble the placement of a radiotracer’s more delicate chemical bonds. Researchers at Princeton University (Princeton, NJ, USA) reported that they now have a way to produce 18F radiotracers that avoids that problem. “It’s the first method to do enantio-selective carbon-18F bond formation,” said lead investigator Dr. Abigail Doyle, a Princeton associate professor of chemistry.
Radiotracers up to now have mostly been evaluated as mixtures of enantiomers. Enantiomers are molecules that are totally identical in composition but the arrangement of atoms at the chiral center are mirror images. A chiral center is an atom, typically carbon, which is connected to four different groups. “We know in biology, small molecule interactions with enzymes often depend on the 3D [three-dimensional] properties of the molecule. Being able to prepare the enantiomers of a given chiral tracer, in order to optimize which tracer has the best binding and imaging properties could be really useful,” Dr. Doyle said.
The researchers developed a cobalt fluoride catalyst—[18F](salen)CoF—to install the radioactive fluoride through the ring-opening reaction of epoxides. Their approach demonstrated excellent enantioselectivity for 11 substrates, five of which are known pre-clinical PET tracers. With this new method, researchers can now assess single enantiomers of existing or new PET radiotracers and evaluate if these compounds offer any benefits over the enantiomeric combinations. Eventually, the goal is to use this chemistry to identify a completely new PET radiotracer for imaging.
Currently, there are only four US Food and Drug Administration (FDA)-approved 18F radiotracers. One of the major limitations to discovering PET tracers is the fact that the only commercially available source of 18F is nucleophilic fluoride. Existing 18F sources are very basic, and during the process of making the 18F radiotracer, can cause the elimination of alcohol and amine groups and rearrange the groups around a chiral center in a process called racemization. Under Dr. Doyle’s less basic reaction conditions, even alcohols and secondary amines are tolerated and no racemization is seen.
“Forming carbon-fluorine bonds by nucleophilic fluoride is challenging. One typically needs to use high temperatures or else the reactions are too slow to permit radioisotope incorporation,” Dr. Doyle commented. “Whereas most reactions require temperatures greater than 100° Celsius, our reaction can be run at 50° Celsius.”
Small amounts of radioactivity were sufficient to develop the reaction at first but to perform imaging studies, larger amounts of radioactivity are necessary. “When you go to higher activity, that’s when you do automated chemistry in a hot cell, which is basically a block of lead so you get no exposure,” Dr. Doyle said.
To be efficient in an industrial environment, the chemistry needs to be converted from the laboratory to an automated hot cell. The researchers were given access to an automated hot cell nearby at Merck’s West Point (PA, USA) site. The whole process of radiolabeling takes about 30 to 45 minutes when it is automated. The set-up includes a robotic arm that delivers solutions to designated vials, a high-performance liquid chromatography (HPLC) system and a rotary evaporator, which are devices for the analysis and purification of the radiotracers.
“The catalyst is very robust and the fact that we can translate the reaction directly to the hot cell bodes very well for non-experts to be able to run these sorts of reactions,” Dr. Doyle concluded. “We demonstrated that the radioactivity is high enough that we could actually use it for imaging. That’s an exciting next step.”
Related Links:
Princeton University
Latest Nuclear Medicine News
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more