Helium Ions May Provide Better-Targeted Treatment in Pediatric Radiotherapy
By MedImaging International staff writers Posted on 14 Apr 2014 |
Scientists have for the first time been able to demonstrate that the use of helium ions in radiotherapy could deliver effective treatment to tumors while sparing healthy organs.
The treatment planning study’s findings were presented at the European Society of radiotherapy & Oncology (ESTRO) 33 Congress, held April 4–8, 2014, in Vienna (Austria), has been able to show that helium may have effects that are superior to radiotherapy using protons, which is a considerable advance on traditional photon beam radiotherapy.
Hermann Fuchs, a PhD student at the Medical University of Vienna/AKH (Austria), working with Dr. Barbara Knäusl and Prof. Dietmar Georg, set out to devise a way of calculating the optimal dose of helium ions for use in radiation treatment. The dose calculation algorithm was then used for treatment plan calculation for 10 pediatric patients, five with neuroblastoma (tumors arising in cells of the hormonal and nervous system), and five with Hodgkin’s lymphoma (a cancer of the white blood cells).
“Particle beam therapy involving protons or carbon ions has advantages over conventional radiotherapy. Helium ions may represent another kind of particle that can improve radiotherapy treatment. Due to their increased mass, spreading of the beam is reduced by a factor of two as compared with protons. Moreover helium ions have an increased biological effectiveness at the end of their range,” Mr. Fuchs explained.
Heavier ions such as carbon have the potential to kill cancer cells more effectively due to their underlying biology. But by modelling these biologic processes, a number of unknowns are introduced, and these can be reduced by using lighter ions such as helium. “Helium ions reside in the low linear energy transfer [LET] area,” said Mr. Fuchs. “LET is a physical quantity describing how much energy of a particle is deposited at a given range, and this measure is important when looking at the biological effects of therapy.”
This greater accuracy and sparing of healthy tissue is essential in the case of children, the researchers reported. When treating them it is especially important to ensure that as little dose of radiation as possible is placed outside the area to be treated, because an increased area treated with a low dose can lead to the development of secondary tumors. Given that children have a potentially long lifespan ahead of them, this probability needs to be reduced as much as possible through the use of therapies that are targeted as precisely as possible to the tumor, while sparing the dose to neighboring areas, and especially to healthy organs particularly sensitive to radiation located nearby (the organs at risk).
“After three years of extensive research and validation efforts, we were able to produce a treatment planning algorithm that enabled us to investigate the possibilities for using helium ion therapy in children treated with low dose radiation. We would now like to investigate its potential in patients being treated with higher doses, for example, those with brain tumors. The good results that have been achieved so far warrant the verification of the model in order to investigate the real clinical potential of helium ions,” Mr. Fuchs said. “In the long term, clinical trials of this therapy will be needed to substantiate the effects of our treatment planning model. “Particle beam therapy has already advanced care and treatment options for cancer patients. We hope that the use of helium ions may help to bring about further improvements.”
President of ESTRO, Prof. Vincenzo Valentini, a radiation oncologist at the Policlinico Universitario A. Gemelli (Rome, Italy), commented, “This is an exciting study that holds out hope for improved, more accurate radiation treatment for young cancer patients.”
Related Links:
Medical University of Vienna/AKH
The treatment planning study’s findings were presented at the European Society of radiotherapy & Oncology (ESTRO) 33 Congress, held April 4–8, 2014, in Vienna (Austria), has been able to show that helium may have effects that are superior to radiotherapy using protons, which is a considerable advance on traditional photon beam radiotherapy.
Hermann Fuchs, a PhD student at the Medical University of Vienna/AKH (Austria), working with Dr. Barbara Knäusl and Prof. Dietmar Georg, set out to devise a way of calculating the optimal dose of helium ions for use in radiation treatment. The dose calculation algorithm was then used for treatment plan calculation for 10 pediatric patients, five with neuroblastoma (tumors arising in cells of the hormonal and nervous system), and five with Hodgkin’s lymphoma (a cancer of the white blood cells).
“Particle beam therapy involving protons or carbon ions has advantages over conventional radiotherapy. Helium ions may represent another kind of particle that can improve radiotherapy treatment. Due to their increased mass, spreading of the beam is reduced by a factor of two as compared with protons. Moreover helium ions have an increased biological effectiveness at the end of their range,” Mr. Fuchs explained.
Heavier ions such as carbon have the potential to kill cancer cells more effectively due to their underlying biology. But by modelling these biologic processes, a number of unknowns are introduced, and these can be reduced by using lighter ions such as helium. “Helium ions reside in the low linear energy transfer [LET] area,” said Mr. Fuchs. “LET is a physical quantity describing how much energy of a particle is deposited at a given range, and this measure is important when looking at the biological effects of therapy.”
This greater accuracy and sparing of healthy tissue is essential in the case of children, the researchers reported. When treating them it is especially important to ensure that as little dose of radiation as possible is placed outside the area to be treated, because an increased area treated with a low dose can lead to the development of secondary tumors. Given that children have a potentially long lifespan ahead of them, this probability needs to be reduced as much as possible through the use of therapies that are targeted as precisely as possible to the tumor, while sparing the dose to neighboring areas, and especially to healthy organs particularly sensitive to radiation located nearby (the organs at risk).
“After three years of extensive research and validation efforts, we were able to produce a treatment planning algorithm that enabled us to investigate the possibilities for using helium ion therapy in children treated with low dose radiation. We would now like to investigate its potential in patients being treated with higher doses, for example, those with brain tumors. The good results that have been achieved so far warrant the verification of the model in order to investigate the real clinical potential of helium ions,” Mr. Fuchs said. “In the long term, clinical trials of this therapy will be needed to substantiate the effects of our treatment planning model. “Particle beam therapy has already advanced care and treatment options for cancer patients. We hope that the use of helium ions may help to bring about further improvements.”
President of ESTRO, Prof. Vincenzo Valentini, a radiation oncologist at the Policlinico Universitario A. Gemelli (Rome, Italy), commented, “This is an exciting study that holds out hope for improved, more accurate radiation treatment for young cancer patients.”
Related Links:
Medical University of Vienna/AKH
Latest Nuclear Medicine News
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more