Radiotherapy Advances Result in More Targeted Treatments, Less Harm to Healthy Tissue
By MedImaging International staff writers Posted on 27 Jan 2014 |
New targeted radiation therapy that is less destructive to healthy cells could soon be up and running due to a team of French researchers, working with German and American scientists.
Current radiotherapy technology is utilized to fight cancer uses a wide energy range when irradiating biologic tissues. By studying at a fundamental level the behavior of molecules exposed to radiation with a carefully chosen energy, the researchers open the way for future radiotherapy treatments, which would not affect as much surrounding tissue and whose total radiation dose would be considerably reduced. This research, which provides new details on the behavior of matter at the atomic level and which could have significant benefits in healthcare, was published online, December 22, 2013, in the journal Nature.
The radiotherapy currently used in nearly half of cancer treatments irradiates biological tissue using a radiation with a wide energy spectrum in order to destroy the cancerous cells. The research of the international team, led by two CNRS researchers from the Laboratoire de Chimie Physique-Matière et Rayonnement (CNRS/UPMC; Paris, France), should make it possible to improve the accuracy and quality of treatment by more finely targeting the range of energy used. Their research at first was designed to study the behavior at the atomic scale of matter subjected to X-ray radiation, whose energy is selected with extreme precision.
When an atom absorbs X-rays of a given energy, a process known as “interatomic Coulombic decay” occurs, leading to the emission of electrons by one of the atoms within a molecule. The researchers demonstrated that it is possible to produce a large amount of low energy electrons in the immediate environment of this target atom, giving rise to a phenomenon of resonance. In a living setting, these low energy electrons are capable of causing the breakage of a double strand of neighboring DNA. However, living cells, including cancerous cells, are typically capable of repairing the damage caused to a single strand of DNA, but not to the double strand. Using this process, it is possible to foresee targeting cancerous cells to destroy them.
Because the irradiation of biologic tissue involved in radiotherapy occurs over a wide energy range, the advantage of using a finely chosen radiation so as to bring about a resonant emission of the electrons is twofold: X-rays penetrate deeply into the tissues but only specific atoms within selected molecules, administered beforehand so as to target the cancerous cells, are thereby excited and the healthy tissues further away are not affected by the irradiation. Moreover, the resonant excitation is 10 times more effective than the non-resonant excitation generated by less specific irradiation. The overall radiation dose may thus be considerably reduced.
These findings have for now been evaluated on small molecules made up of less than five atoms. The researchers now plan to assess this process of generating electrons on more complex molecules containing several hundred to several thousand atoms, such as the molecules that make up living cells. The objective in the long-term is to produce such electrons, toxic for DNA, within cancerous cells. To achieve this, the researchers are foreseeing irradiating tissues with X-rays having the appropriate energy, after using a target atom to tag the cancerous cells.
Related Links:
Laboratoire de Chimie Physique-Matière et Rayonnement
Current radiotherapy technology is utilized to fight cancer uses a wide energy range when irradiating biologic tissues. By studying at a fundamental level the behavior of molecules exposed to radiation with a carefully chosen energy, the researchers open the way for future radiotherapy treatments, which would not affect as much surrounding tissue and whose total radiation dose would be considerably reduced. This research, which provides new details on the behavior of matter at the atomic level and which could have significant benefits in healthcare, was published online, December 22, 2013, in the journal Nature.
The radiotherapy currently used in nearly half of cancer treatments irradiates biological tissue using a radiation with a wide energy spectrum in order to destroy the cancerous cells. The research of the international team, led by two CNRS researchers from the Laboratoire de Chimie Physique-Matière et Rayonnement (CNRS/UPMC; Paris, France), should make it possible to improve the accuracy and quality of treatment by more finely targeting the range of energy used. Their research at first was designed to study the behavior at the atomic scale of matter subjected to X-ray radiation, whose energy is selected with extreme precision.
When an atom absorbs X-rays of a given energy, a process known as “interatomic Coulombic decay” occurs, leading to the emission of electrons by one of the atoms within a molecule. The researchers demonstrated that it is possible to produce a large amount of low energy electrons in the immediate environment of this target atom, giving rise to a phenomenon of resonance. In a living setting, these low energy electrons are capable of causing the breakage of a double strand of neighboring DNA. However, living cells, including cancerous cells, are typically capable of repairing the damage caused to a single strand of DNA, but not to the double strand. Using this process, it is possible to foresee targeting cancerous cells to destroy them.
Because the irradiation of biologic tissue involved in radiotherapy occurs over a wide energy range, the advantage of using a finely chosen radiation so as to bring about a resonant emission of the electrons is twofold: X-rays penetrate deeply into the tissues but only specific atoms within selected molecules, administered beforehand so as to target the cancerous cells, are thereby excited and the healthy tissues further away are not affected by the irradiation. Moreover, the resonant excitation is 10 times more effective than the non-resonant excitation generated by less specific irradiation. The overall radiation dose may thus be considerably reduced.
These findings have for now been evaluated on small molecules made up of less than five atoms. The researchers now plan to assess this process of generating electrons on more complex molecules containing several hundred to several thousand atoms, such as the molecules that make up living cells. The objective in the long-term is to produce such electrons, toxic for DNA, within cancerous cells. To achieve this, the researchers are foreseeing irradiating tissues with X-rays having the appropriate energy, after using a target atom to tag the cancerous cells.
Related Links:
Laboratoire de Chimie Physique-Matière et Rayonnement
Latest Nuclear Medicine News
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more