Innovative Dye Improves Diagnostic Imaging
By MedImaging International staff writers Posted on 22 May 2013 |

Image: Human breast cancer cells stained with triangulenium and state of art dye. Picture series shot over 30 nanoseconds. Triangulenium emits light up to 100 nanoseconds (Photo courtesy of the University of Copenhagen).
Imaging technology is becoming more vital in hospitals worldwide, from magnetic resonance imaging (MRI) scanners to microscopes, whether for the diagnosis of disorders or for research into new cures. Imaging technology requires dyes or contrast agents of some sort. Current contrast agents and dyes are costly, difficult to work with, and far from ideal. Now, Danish chemists have discovered a new dye that they report is superior to any of the dyes currently available.
Drs. Thomas Just Sørensen and Bo Wegge Laursen are chemists at the University of Copenhagen (Denmark). In a series of published articles, they have shown that the aza-oxa-trangulenium dyes have the potential to outclass all fluorescent dyes currently used in imaging. “Our dyes are 10 times better, far cheaper, and easier to use. The latter I believe, will lead to expanded opportunities and broadened use, by physicians and researchers in developing countries, for example,” stated Dr. Sørensen.
One of the key challenges, interestingly, when capturing images of cells and organs, is to avoid noise. The agents that make it possible to see microscopic biologic structures are luminescent, but then, so is tissue. Consequently, the contrast agent’s light risks being overpowered by “light noise.” Tissue becomes luminescent when exposed to light, similar to the hands of a clock. Tissue and other organic structures luminesce, or lights up, for 10 nanoseconds after exposure to light. The light-life of an ordinary dye is the same—10 nanoseconds. However, triangulenium dyes produce light for an entire 100 nanoseconds.
The long life of the triangulenium dyes means that an image can be generated without background noise. Furthermore, the extra 90 nanoseconds opens the potential of filming living images of the processes occurring within cells, for instance, when a drug attacks an illness.
Medical image analysis departments currently spend a lot of time staining samples, because all samples must be treated with two agents. The use of triangulenium dyes necessitates only one dye. Furthermore, in contrast with typical dyes, no specialized equipment is needed to see the dyes in tissue samples. A lens from a pair of polarized sunglasses and a simple microscope are all that are required.
When one compares the benefits of triangulenium dyes against the three million Danish kroner per gram price tag of traditional dyes (USD 500.000) one would expect that the new dye would immediately out-compete its predecessors. However, up to now, Drs. Sørensen and Laursen have had to give their dye away. “I know that our dye is better, but biologists and physicians don’t. Therefore, we are giving the dye away to anyone that wants to perform a comparison test. Someone who needs to assess the health of sick people wouldn’t dare to rely on an untested substance. Only when several researchers have shown triangulenium dyes to perform just as effectively as its predecessors can we hope for our substance to become more widely adopted,” concluded Dr. Sørensen.
The latest findings on the agent were published in May 2013 issue of the journal Analytical and Bioanalytical Chemistry.
Related Links:
University of Copenhagen
Drs. Thomas Just Sørensen and Bo Wegge Laursen are chemists at the University of Copenhagen (Denmark). In a series of published articles, they have shown that the aza-oxa-trangulenium dyes have the potential to outclass all fluorescent dyes currently used in imaging. “Our dyes are 10 times better, far cheaper, and easier to use. The latter I believe, will lead to expanded opportunities and broadened use, by physicians and researchers in developing countries, for example,” stated Dr. Sørensen.
One of the key challenges, interestingly, when capturing images of cells and organs, is to avoid noise. The agents that make it possible to see microscopic biologic structures are luminescent, but then, so is tissue. Consequently, the contrast agent’s light risks being overpowered by “light noise.” Tissue becomes luminescent when exposed to light, similar to the hands of a clock. Tissue and other organic structures luminesce, or lights up, for 10 nanoseconds after exposure to light. The light-life of an ordinary dye is the same—10 nanoseconds. However, triangulenium dyes produce light for an entire 100 nanoseconds.
The long life of the triangulenium dyes means that an image can be generated without background noise. Furthermore, the extra 90 nanoseconds opens the potential of filming living images of the processes occurring within cells, for instance, when a drug attacks an illness.
Medical image analysis departments currently spend a lot of time staining samples, because all samples must be treated with two agents. The use of triangulenium dyes necessitates only one dye. Furthermore, in contrast with typical dyes, no specialized equipment is needed to see the dyes in tissue samples. A lens from a pair of polarized sunglasses and a simple microscope are all that are required.
When one compares the benefits of triangulenium dyes against the three million Danish kroner per gram price tag of traditional dyes (USD 500.000) one would expect that the new dye would immediately out-compete its predecessors. However, up to now, Drs. Sørensen and Laursen have had to give their dye away. “I know that our dye is better, but biologists and physicians don’t. Therefore, we are giving the dye away to anyone that wants to perform a comparison test. Someone who needs to assess the health of sick people wouldn’t dare to rely on an untested substance. Only when several researchers have shown triangulenium dyes to perform just as effectively as its predecessors can we hope for our substance to become more widely adopted,” concluded Dr. Sørensen.
The latest findings on the agent were published in May 2013 issue of the journal Analytical and Bioanalytical Chemistry.
Related Links:
University of Copenhagen
Latest MRI News
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
- New Scan Method Shows Effects of Treatment on Lung Function in Real Time
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more