Radiopharmaceuticals Can More Effectively Manage Treatment and Predict Survival for Patients with Gliomas
By MedImaging International staff writers Posted on 20 Dec 2012 |
In the management of gliomas, accurate evaluation of tumor grade and the proliferative activity of cells is key in determining the most appropriate treatment and predicting overall patient survival. Two new studies recently focused on the potential of 3'-deoxy-3'-F-18-fluorothymidine (F-18-FLT) positron emission tomography (PET) imaging to noninvasively and effectively provide tumor-specific data to guide management of patients with gliomas.
Gliomas are atypical neoplasms, and most are diffuse tumors that grow rapidly. Patients with glioblastoma, the most malignant and most frequent type of glioma, typically die within two years. Ensuring the most appropriate treatment in a timely manner is of utmost importance for these patients.
Two studies published in the December 2012 issue of the Journal of Nuclear Medicine (JNM) examined the utility of F-18-FLT PET for providing prognostic information for patients with gliomas. “The accumulation of F-18-FLT is dependent on the presence of thymidine kinase-1, which is closely linked with cellular proliferation. In several clinical studies, F-18-FLT has been validated for evaluation of tumor grade and cellular proliferation in gliomas,” noted Yuka Yamamoto, MD, from the department of radiology, Faculty of Medicine, Kagawa University (Kagawa, Japan;), and lead author of the study.
Investigators retrospectively evaluated F-18-FLT uptake in patients with newly diagnosed (36 patients) and recurrent (20 patients) gliomas. Patients underwent F-18-FLT PET scanning; tissue specimens were then taken to obtain a pathologic diagnosis. The F-18-FLT images were analyzed by two nuclear medicine physicians, who identified tumor lesions as areas of focally increased uptake exceeding that of normal brain background, and who determined the tumor-to-normal (T/N) ratio. Results the 18-F-FLT PET scan were compared with tumor grade and proliferative activity estimated from the tissue specimens.
Researchers found that there was considerable difference in the T/N ratio among different grades of newly diagnosed and recurrent gliomas. F-18-FLT uptake correlated more strongly with the proliferative activity in newly diagnosed gliomas than in recurrent gliomas and provided a more comprehensive view to determine tumor grade as compared to a single tissue specimen.
The correlation between proliferative volume and prediction of overall survival for high-grade glioma patients was also explored. In the study, 26 consecutive patients underwent preoperative 18-F-FLT PET/computed tomography (CT) scans. The maximum standardized uptake value (SUVmax) was calculated and three different PET segmentation methods were used to estimate the proliferative volume. The prognostic value of the SUVmax and the different methods to approximate proliferative volume for overall survival were then assessed.
The mean overall survival for the patients in the study was 397 days; 19 patients died during this time. Based on this follow-up information, researchers determined that the signal-to-background ration (SBR) for an adaptive threshold delineation (PVSBR) technique demonstrated a considerably better association with overall survival then the SUVmaxor the other two PET segmentation methods.
“The predictive value of the proliferative volume for the overall survival of patients seems to be independent of the postoperative treatment,” explained Albert J.S. Idema, MD, from the department of neurosurgery, Radboud University Nijmegen Medical Center (Nijmegen, The Netherlands), and lead author of the study. “The importance for patients is the possible utilization of 18-F-FLT PET to select the most appropriate treatment options. The very limited burden that the procedure causes to the patient is a further asset.”
The development of new molecular imaging agents, such as F-18-FLT, which is now used only for research purposes, has enabled clinical researchers to utilize the agents to evaluate the features of tumors and their therapeutic response. “We hope that these findings will be helpful for identifying the role of F-18-FLT in assessing the response to antiproliferative treatment in patients with gliomas,” said Dr. Yamamoto.
Related Links:
Kagawa University
Radboud University
Gliomas are atypical neoplasms, and most are diffuse tumors that grow rapidly. Patients with glioblastoma, the most malignant and most frequent type of glioma, typically die within two years. Ensuring the most appropriate treatment in a timely manner is of utmost importance for these patients.
Two studies published in the December 2012 issue of the Journal of Nuclear Medicine (JNM) examined the utility of F-18-FLT PET for providing prognostic information for patients with gliomas. “The accumulation of F-18-FLT is dependent on the presence of thymidine kinase-1, which is closely linked with cellular proliferation. In several clinical studies, F-18-FLT has been validated for evaluation of tumor grade and cellular proliferation in gliomas,” noted Yuka Yamamoto, MD, from the department of radiology, Faculty of Medicine, Kagawa University (Kagawa, Japan;), and lead author of the study.
Investigators retrospectively evaluated F-18-FLT uptake in patients with newly diagnosed (36 patients) and recurrent (20 patients) gliomas. Patients underwent F-18-FLT PET scanning; tissue specimens were then taken to obtain a pathologic diagnosis. The F-18-FLT images were analyzed by two nuclear medicine physicians, who identified tumor lesions as areas of focally increased uptake exceeding that of normal brain background, and who determined the tumor-to-normal (T/N) ratio. Results the 18-F-FLT PET scan were compared with tumor grade and proliferative activity estimated from the tissue specimens.
Researchers found that there was considerable difference in the T/N ratio among different grades of newly diagnosed and recurrent gliomas. F-18-FLT uptake correlated more strongly with the proliferative activity in newly diagnosed gliomas than in recurrent gliomas and provided a more comprehensive view to determine tumor grade as compared to a single tissue specimen.
The correlation between proliferative volume and prediction of overall survival for high-grade glioma patients was also explored. In the study, 26 consecutive patients underwent preoperative 18-F-FLT PET/computed tomography (CT) scans. The maximum standardized uptake value (SUVmax) was calculated and three different PET segmentation methods were used to estimate the proliferative volume. The prognostic value of the SUVmax and the different methods to approximate proliferative volume for overall survival were then assessed.
The mean overall survival for the patients in the study was 397 days; 19 patients died during this time. Based on this follow-up information, researchers determined that the signal-to-background ration (SBR) for an adaptive threshold delineation (PVSBR) technique demonstrated a considerably better association with overall survival then the SUVmaxor the other two PET segmentation methods.
“The predictive value of the proliferative volume for the overall survival of patients seems to be independent of the postoperative treatment,” explained Albert J.S. Idema, MD, from the department of neurosurgery, Radboud University Nijmegen Medical Center (Nijmegen, The Netherlands), and lead author of the study. “The importance for patients is the possible utilization of 18-F-FLT PET to select the most appropriate treatment options. The very limited burden that the procedure causes to the patient is a further asset.”
The development of new molecular imaging agents, such as F-18-FLT, which is now used only for research purposes, has enabled clinical researchers to utilize the agents to evaluate the features of tumors and their therapeutic response. “We hope that these findings will be helpful for identifying the role of F-18-FLT in assessing the response to antiproliferative treatment in patients with gliomas,” said Dr. Yamamoto.
Related Links:
Kagawa University
Radboud University
Latest Nuclear Medicine News
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more