DTI MRI Scans Reveal Brain Differences in Six-Month-Old Autistic Infants
By MedImaging International staff writers Posted on 28 Feb 2012 |

Image: A visualization of white matter pathways in the brains of infants at-risk for autism. Warmer colors represent levels of white matter organization and development (Photo courtesy of Jason Wolff).
New findings suggest that autism does not appear suddenly in young children, but instead develops over time during infancy. This discovery is significant because it brings scientists one-step closer to developing a biomarker to assist with very early diagnoses for autism spectrum disorders.
A new study from the Infant Brain Imaging Network found significant differences in brain development starting at age six months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism. “It’s a tremendously exciting finding,” said Sarah Paterson, PhD, director of the Infant neuroimaging lab at the Center for Autism Research at The Children’s Hospital of Philadelphia (CHOP; PA, USA). “We found that the brains of the children who developed autism were markedly different even prior to the onset of behavioral symptoms of autism. Thus, our findings, while requiring replication, are a very important first step towards identifying a biomarker for autism risk. This would enable specialists to diagnose autism much earlier than what is currently possible through behavioral observations.”
The study also suggests that autism does not appear abruptly in young children but instead develops over time during infancy, noted the researchers. Intensive early intervention has been shown to improve outcomes in children with developmental delays and autism. “This research raises the possibility that we might be able to intervene even before a child is six months old, to blunt, or prevent the development of some autism symptoms,” said Dr. Paterson.
The study was published February 17, 2012, in the American Journal of Psychiatry. These findings are the latest from the ongoing Infant Brain Imaging Study (IBIS), which is led at CHOP by Dr. Paterson and Robert Schultz, PhD, who are coauthors on this study.
Participants in the study were 92 infants believed to be at high risk for ASD, because they all have older siblings with autism. Each infant had diffusion tensor imaging (DTI)--a type of magnetic resonance imaging (MRI)--at six months and behavioral assessments at 24 months. Most of the children also had additional brain imaging scans at either or both 12 and 24 months.
At 24 months, 28 infants (30%) met criteria for ASDs while 64 infants (70%) did not. The two groups differed in white matter fiber tract development--pathways that connect brain regions--as measured by fractional anisotropy (FA). FA measures white matter organization and development, based on the movement of water molecules through brain tissue.
This study examined 15 separate fiber tracts, and found considerable differences in FA growth trajectories in 12 of the 15 tracts between infants who did develop autism versus infants who did not. Infants who later developed autism had elevated FA at six months but then experienced slower development over time. By 24 months of age, infants with autism had lower FA values than infants without autism did.
The findings come on the heels of a recent study from London, UK, which found that infants at high risk for autism who were later diagnosed with the condition showed different brain responses from low-risk babies, or from high-risk babies that did not develop autism when shown images of faces looking at or away from the baby. Dr. Paterson reported that the two findings support one another and are promising evidence that scientists are on the right path towards finding markers for identifying autism much earlier than is currently possible.
In addition to the Center for Autism Research at CHOP, other institutions that took part in the study include the University of North Carolina (Chapel Hill, USA), University of Utah (Salt Lake City, USA), Washington University in St. Louis (MO, USA), University of Washington (Seattle, USA), McGill University (Montreal, Canada), and the University of Alberta (Edmonton, Canada).
The Center for Autism Research (CAR) is a collaborative effort between several dozen scientists across multiple departments at the Children’s Hospital of Philadelphia. CAR’s goals are to identify the causes of autism spectrum disorders (ASD) and to use that knowledge to develop more effective treatments. CAR conducts research studies for infants at risk for being diagnosed with ASD (due to having a sibling already diagnosed) as well as toddlers, school-aged children, and adults on the autism spectrum.
Related Links:
Center for Autism Research at The Children’s Hospital of Philadelphia
A new study from the Infant Brain Imaging Network found significant differences in brain development starting at age six months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism. “It’s a tremendously exciting finding,” said Sarah Paterson, PhD, director of the Infant neuroimaging lab at the Center for Autism Research at The Children’s Hospital of Philadelphia (CHOP; PA, USA). “We found that the brains of the children who developed autism were markedly different even prior to the onset of behavioral symptoms of autism. Thus, our findings, while requiring replication, are a very important first step towards identifying a biomarker for autism risk. This would enable specialists to diagnose autism much earlier than what is currently possible through behavioral observations.”
The study also suggests that autism does not appear abruptly in young children but instead develops over time during infancy, noted the researchers. Intensive early intervention has been shown to improve outcomes in children with developmental delays and autism. “This research raises the possibility that we might be able to intervene even before a child is six months old, to blunt, or prevent the development of some autism symptoms,” said Dr. Paterson.
The study was published February 17, 2012, in the American Journal of Psychiatry. These findings are the latest from the ongoing Infant Brain Imaging Study (IBIS), which is led at CHOP by Dr. Paterson and Robert Schultz, PhD, who are coauthors on this study.
Participants in the study were 92 infants believed to be at high risk for ASD, because they all have older siblings with autism. Each infant had diffusion tensor imaging (DTI)--a type of magnetic resonance imaging (MRI)--at six months and behavioral assessments at 24 months. Most of the children also had additional brain imaging scans at either or both 12 and 24 months.
At 24 months, 28 infants (30%) met criteria for ASDs while 64 infants (70%) did not. The two groups differed in white matter fiber tract development--pathways that connect brain regions--as measured by fractional anisotropy (FA). FA measures white matter organization and development, based on the movement of water molecules through brain tissue.
This study examined 15 separate fiber tracts, and found considerable differences in FA growth trajectories in 12 of the 15 tracts between infants who did develop autism versus infants who did not. Infants who later developed autism had elevated FA at six months but then experienced slower development over time. By 24 months of age, infants with autism had lower FA values than infants without autism did.
The findings come on the heels of a recent study from London, UK, which found that infants at high risk for autism who were later diagnosed with the condition showed different brain responses from low-risk babies, or from high-risk babies that did not develop autism when shown images of faces looking at or away from the baby. Dr. Paterson reported that the two findings support one another and are promising evidence that scientists are on the right path towards finding markers for identifying autism much earlier than is currently possible.
In addition to the Center for Autism Research at CHOP, other institutions that took part in the study include the University of North Carolina (Chapel Hill, USA), University of Utah (Salt Lake City, USA), Washington University in St. Louis (MO, USA), University of Washington (Seattle, USA), McGill University (Montreal, Canada), and the University of Alberta (Edmonton, Canada).
The Center for Autism Research (CAR) is a collaborative effort between several dozen scientists across multiple departments at the Children’s Hospital of Philadelphia. CAR’s goals are to identify the causes of autism spectrum disorders (ASD) and to use that knowledge to develop more effective treatments. CAR conducts research studies for infants at risk for being diagnosed with ASD (due to having a sibling already diagnosed) as well as toddlers, school-aged children, and adults on the autism spectrum.
Related Links:
Center for Autism Research at The Children’s Hospital of Philadelphia
Latest MRI News
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
Channels
Radiography
view channel
AI Helps Radiologists Spot More Lesions in Mammograms
Breast cancer is a critical health issue, and accurate detection through mammography is essential for effective treatment. However, interpreting mammograms can be challenging for radiologists, particularly... Read more
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more