MR Spectroscopy May Help Diagnose Aggressiveness of Prostate Cancer
By MedImaging International staff writers Posted on 15 Feb 2010 |

Image: Light micrograph of a section through a prostate gland showing cancerous cells (photo courtesy Dr. E. Walker / SPL).
Magnetic resonance spectroscopy (MRS), which analyzes the biochemistry instead of the structure of tissues, may soon be able both to pinpoint the precise location of prostate cancer and to determine the tumor's aggressiveness; data that could help guide treatment planning.
In the January 27, 2010, online issue of the journal Science Translational Medicine, Massachusetts General Hospital (MGH; Boston, MA, USA) researchers reported how spectroscopic analysis of the biochemical composition of prostate glands accurately identified the location of tissue confirmed to be malignant by conventional pathology.
"Collectively analyzing all the metabolites measurable with a 7-Tesla MR scanner maps out prostate cancer in a way that cannot be achieved by any other current radiological test or by analyzing changes in a single metabolite,” said Leo L. Cheng, Ph.D., of the MGH imaging and pathology departments, the study's senior author. "It detects tumors that cannot be found with other imaging approaches and may give us information that can help determine the best course of treatment.”
Prostate-specific antigen (PSA) screening indicates the potential presence of a tumor, but since benign prostate conditions also affect PSA levels, a surgical biopsy is necessary to detect cancer. Since a tumor may be confined to only a small portion of the prostate, without a way to identify the most suspicious regions, a biopsy sample can miss the malignant area. In 2005, Dr. Cheng and his colleagues found that information provided by MR spectroscopy could differentiate prostate cancer from benign tissue and was superior to conventional pathologic studies in determining a tumor's prognosis. That investigation analyzed tiny tissue samples with an advanced technique utilizing a powerful research magnet.
The current study, building on the 2005 study, utilized a clinical MR scanner to analyze whole prostate glands, an application that could be applied to patient care. Spectroscopic readings were taken across sections of five cancerous prostate glands that had been removed from patients. The scans measured proportions of metabolites--biochemicals produced by various metabolic processes--that had been associated with the presence of cancer using data from the 2005 study. After scanning was complete, the prostate glands were examined by standard histologic techniques, which determine the presence of tumor based on the tissue's appearance. The histologic analysis was performed in a manner that preserved the tumor's location within the prostate.
When the two analyses were compared, five out of seven prostate regions where histologically identified tumor was located also scored high on a spectroscopy-based "malignancy index” The two other tumor regions were near the outer edge of the prostates, where exposure to the air compromised the accuracy of MR spectroscopy findings. For those tumors that did match, higher malignancy index scores also corresponded with larger tumors. Moreover, while the malignancy index was most accurate in identifying stage II tumors--those confined to the prostate and large enough to be felt in a physical exam--its overall accuracy was more than 90%.
Dr. Cheng explained that a prostate tumor's complete metabolomic profile has the potential to give essential information on its biological status. "As we analyze more and more tumors with spectroscopy, we should be able to define profiles that reflect specific clinical and pathological states, achieving a true needle-free, MR biopsy,” he stated. "And once these spectra are measured, they can be recombined to provide profiles reflecting parameters from the tumor's location to, ultimately, its aggressiveness.”
Since the current study was conducted using a whole-body clinical MR scanner, it should be adaptable to scanning patients. Because it used the powerful 7-Tesla magnetic resonance equipment at the MGH's Martinos Center for Biomedical Imaging, Dr. Cheng plans to further evaluate the approach using 3-Tesla equipment, which is available at centers across the United States. He and his colleagues are also working on more powerful software to process the amount of data in a full metabolomic screen in real time. After additional studies confirm their current results, they hope to move into clinical trials within one year or two.
"As long as we can define appropriate metabolomic profiles, this concept could someday be used for any kind of tumor or medical condition,” added Dr. Cheng, an assistant professor of radiology (pathology) at Harvard Medical School (Boston, MA, USA). "Furthermore, this concept can be extended from mapping tissue metabolites to include other disease-sensitive parameters. Eventually we hope to move the field of radiology from analyzing images that show the effects of disease to producing images that reveal the disease process itself.”
Related Links:
Massachusetts General Hospital
In the January 27, 2010, online issue of the journal Science Translational Medicine, Massachusetts General Hospital (MGH; Boston, MA, USA) researchers reported how spectroscopic analysis of the biochemical composition of prostate glands accurately identified the location of tissue confirmed to be malignant by conventional pathology.
"Collectively analyzing all the metabolites measurable with a 7-Tesla MR scanner maps out prostate cancer in a way that cannot be achieved by any other current radiological test or by analyzing changes in a single metabolite,” said Leo L. Cheng, Ph.D., of the MGH imaging and pathology departments, the study's senior author. "It detects tumors that cannot be found with other imaging approaches and may give us information that can help determine the best course of treatment.”
Prostate-specific antigen (PSA) screening indicates the potential presence of a tumor, but since benign prostate conditions also affect PSA levels, a surgical biopsy is necessary to detect cancer. Since a tumor may be confined to only a small portion of the prostate, without a way to identify the most suspicious regions, a biopsy sample can miss the malignant area. In 2005, Dr. Cheng and his colleagues found that information provided by MR spectroscopy could differentiate prostate cancer from benign tissue and was superior to conventional pathologic studies in determining a tumor's prognosis. That investigation analyzed tiny tissue samples with an advanced technique utilizing a powerful research magnet.
The current study, building on the 2005 study, utilized a clinical MR scanner to analyze whole prostate glands, an application that could be applied to patient care. Spectroscopic readings were taken across sections of five cancerous prostate glands that had been removed from patients. The scans measured proportions of metabolites--biochemicals produced by various metabolic processes--that had been associated with the presence of cancer using data from the 2005 study. After scanning was complete, the prostate glands were examined by standard histologic techniques, which determine the presence of tumor based on the tissue's appearance. The histologic analysis was performed in a manner that preserved the tumor's location within the prostate.
When the two analyses were compared, five out of seven prostate regions where histologically identified tumor was located also scored high on a spectroscopy-based "malignancy index” The two other tumor regions were near the outer edge of the prostates, where exposure to the air compromised the accuracy of MR spectroscopy findings. For those tumors that did match, higher malignancy index scores also corresponded with larger tumors. Moreover, while the malignancy index was most accurate in identifying stage II tumors--those confined to the prostate and large enough to be felt in a physical exam--its overall accuracy was more than 90%.
Dr. Cheng explained that a prostate tumor's complete metabolomic profile has the potential to give essential information on its biological status. "As we analyze more and more tumors with spectroscopy, we should be able to define profiles that reflect specific clinical and pathological states, achieving a true needle-free, MR biopsy,” he stated. "And once these spectra are measured, they can be recombined to provide profiles reflecting parameters from the tumor's location to, ultimately, its aggressiveness.”
Since the current study was conducted using a whole-body clinical MR scanner, it should be adaptable to scanning patients. Because it used the powerful 7-Tesla magnetic resonance equipment at the MGH's Martinos Center for Biomedical Imaging, Dr. Cheng plans to further evaluate the approach using 3-Tesla equipment, which is available at centers across the United States. He and his colleagues are also working on more powerful software to process the amount of data in a full metabolomic screen in real time. After additional studies confirm their current results, they hope to move into clinical trials within one year or two.
"As long as we can define appropriate metabolomic profiles, this concept could someday be used for any kind of tumor or medical condition,” added Dr. Cheng, an assistant professor of radiology (pathology) at Harvard Medical School (Boston, MA, USA). "Furthermore, this concept can be extended from mapping tissue metabolites to include other disease-sensitive parameters. Eventually we hope to move the field of radiology from analyzing images that show the effects of disease to producing images that reveal the disease process itself.”
Related Links:
Massachusetts General Hospital
Latest MRI News
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
- New Scan Method Shows Effects of Treatment on Lung Function in Real Time
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more