We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

New Wearable Magnetic Metamaterial Could Help Make MRI Scans Crisper, Faster, and Cheaper

By MedImaging International staff writers
Posted on 14 Feb 2022
Print article
Image: New magnetic metamaterial device (Photo courtesy of Boston University)
Image: New magnetic metamaterial device (Photo courtesy of Boston University)

A newly designed wearable magnetic metamaterial could help make MRI scans crisper, faster, and cheaper.

The gadget built by scientists at Boston University (Boston, MA, USA) is made of plastic and copper wire is a technological breakthrough with the potential to revolutionize medical imaging. Despite its playful look, the device is actually a metamaterial, packing in a ton of physics, engineering, and mathematical know-how. The scientists are experts in metamaterials, a type of engineered structure created from small unit cells that might be unspectacular alone, but when grouped together in a precise way, get new superpowers not found in nature. Metamaterials, for instance, can bend, absorb, or manipulate waves - such as electromagnetic waves, sound waves, or radio waves. Each unit cell, also called a resonator, is typically arranged in a repeating pattern in rows and columns; they can be designed in different sizes and shapes, and placed at different orientations, depending on which waves they’re designed to influence.

Metamaterials can have many novel functions. The scientists had earlier designed an acoustic metamaterial that blocks sound without stopping airflow (imagine quieter jet engines and air conditioners) and a magnetic metamaterial that can improve the quality of magnetic resonance imaging (MRI) machines used for medical diagnosis. Now, the team have taken their work a step further with the wearable metamaterial. The dome-shaped device, which fits over a person’s head and can be worn during a brain scan, boosts MRI performance, creating crisper images that can be captured at twice the normal speed.

The helmet is fashioned from a series of magnetic metamaterial resonators, which are made from 3D-printed plastic tubes wrapped in copper wiring, grouped on an array, and precisely arranged to channel the magnetic field of the MRI machine. Placing the magnetic metamaterial - in helmet form or as the originally designed flat array - near the part of the body to be scanned could make MRIs less costly and more time efficient for doctors, radiologists, and patients - all while improving image quality. Eventually, the magnetic metamaterial has the potential to be used in conjunction with cheaper low-field MRI machines to make the technology more widely available, particularly in the developing world.

Related Links:
Boston University 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
PACS Workstation
CHILI Web Viewer
New
Ultrasound Table
Powered Ultrasound Table-Flat Top

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more