We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

New Algorithm for Rapid, Automated Diagnosis of COVID-19 from Chest CTs Overcomes RT-PCR Limitations

By MedImaging International staff writers
Posted on 25 Oct 2021
Print article
Image: The DA-CMIL algorithm analyzes chest CT scans to diagnose COVID-19 (Photo courtesy of Pixabay)
Image: The DA-CMIL algorithm analyzes chest CT scans to diagnose COVID-19 (Photo courtesy of Pixabay)

Scientists have developed a new algorithm for rapid, computerized diagnosis of COVID-19 that overcomes the limitations of reverse transcription polymerase chain reaction.

The new framework for accurate and interpretable automated analysis of chest CT scans was developed by researchers at the Daegu Gyeongbuk Institute of Science (DGIST; Daegu, South Korea). The current standard for diagnosis of COVID-19 through reverse transcription polymerase chain reaction (RT-PCR) is limited owing to its low sensitivity, high rate of false positives, and long testing times. This makes it difficult to identify infected patients quickly and provide them with treatment. Furthermore, there is a risk that patients will still spread the disease while waiting for the results of their diagnostic test.

Chest CT scans have emerged as a quick and effective way to diagnose the disease, but they require radiologist expertise to interpret, and sometimes the scans look similar to other kinds of lung infections, like bacterial pneumonia. Now, a team of scientists have developed a technique for the automated and accurate interpretation of chest CT scans. To build their diagnostic framework, the research team used a Machine Learning technique called “Multiple Instance Learning” (MIL). In MIL, the machine learning algorithm is “trained” using sets, or “bags,” of multiple examples called “instances.” The MIL algorithm then uses these bags to learn to label individual examples or inputs.

The research team trained their new framework, called dual attention contrastive based MIL (DA-CMIL), to differentiate between COVID and bacterial pneumonia, and found that its performance was on par to other state-of-the-art automated image analysis methods. Moreover, the DA-CMIL algorithm can leverage limited or incomplete information to efficiently train its AI system. This research extends far beyond the COVID pandemic, laying the foundation for the development of more robust and cheap diagnostic systems, which will be of particular benefit to under-developed countries or countries with otherwise limited medical and human resources.

“Our study can be viewed from both a technical and clinical perspective. First, the algorithms introduced here can be extended to similar settings with other types of medical images. Second, the ‘dual attention,’ particularly the ‘spatial attention,’ used in the model improves the interpretability of the algorithm, which will help clinicians understand how automated solutions make decisions,” explained Prof. Sang Hyun Park and Philip Chikontwe from DGIST, who led the study.

Related Links:
Daegu Gyeongbuk Institute of Science (DGIST)

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
DR Flat Panel Detector
1500L
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
New
Illuminator
Trimline Basic

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more