MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

3D-Printed Marker Optimizes Portable Radiography

By MedImaging International staff writers
Posted on 17 Jun 2021
Print article
Image: The X-clometer resolves relative angulation of an x-ray (Photo courtesy of NIH)
Image: The X-clometer resolves relative angulation of an x-ray (Photo courtesy of NIH)
A novel head-of-bed (HOB) angulation device significantly improves the diagnostic performance of portable chest and abdominal x-rays.

Developed at the U.S. National Institutes of Health (NIH; Bethesda, MD, USA), the X-clometer is used to resolve the location the x-ray cassette, relative to the x-ray source, and divergent x-rays. The device, which is placed in the upper right corner of the field of view (FOV), is essentially a left or right marker that also quantifies the HOB angle from supine (0 degrees) to upright (90 degrees). The approximate angle is determined by a ball bearing that rolls freely within the curved passageway of the device to indicate the angle of the patient, cassette, and x-ray tube during the chest x-ray.

The patented technology improves performance of portable chest and abdominal x-rays, and allows reliable comparisons of patient condition over time and improved care for intensive care unit (ICU) patients. For example, the need for immediate drainage resulting from pleural effusion can be more effectively assessed. The X-clometer was presented at the Society for Imaging Informatics in Medicine (SIIM) annual meeting, held online during May 2021.

“We believe that knowing the degree of inclination across serial exams will help negate the need to bring patients to the department with numerous chest drains, IV lines, and other support devices,” said device presenter Raisa Freidlin, DSc, of the NIH. “In addition, following further evaluation and actual use, X-clometer may decrease the need for obtaining CT scans, which would reduce unnecessary radiation exposure and additional expenses.”

The system was created using the 3D model assembly programs Solidworks and Fusion 360. Using 3D computer-aided detection software, the researchers recently improved reading accuracy in the 60- to 90-degree range, which also optimized size and positioning of the device. The X-clometer 3D print files are publicly available on the NIH's 3D Print Exchange website.

Related Links:
U.S. National Institutes of Health
NIH's 3D Print Exchange


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Computed Tomography (CT) Scanner
Aquilion Serve SP
Color Doppler Ultrasound System
DRE Crystal 4PX
New
Mobile Digital C-arm X-Ray System
HHMC-200D

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more