We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI-Powered Artefact Removal Can Identify Poor-Quality MRI Images with Near-Human Accuracy in Milliseconds

By MedImaging International staff writers
Posted on 05 Feb 2021
Print article
Image: Siemens Magnetom Espree 1.5T (Photo courtesy of Siemens)
Image: Siemens Magnetom Espree 1.5T (Photo courtesy of Siemens)
A new study has demonstrated the effective use of a retrospective artefact correction (RAC) neural network learned with unpaired data to disentangle and remove unwanted artefacts in magnetic resonance (MR) images.

The findings of the study by researchers at the UNC School of Medicine (Chapel Hill, NC, USA) also revealed the capacity of the RAC network to retain anatomical details in MR images with different contrasts, improve magnetic resonance imaging (MRI) quality post acquisition, and enhance image usability.

MRI is susceptible to artefacts caused by motion that can render the images unusable and cause financial losses in imaging studies. At UNC’s Biomedical Research Imaging Center (BRIC), a team is exploring the use of deep learning to identify poor-quality images with near-human accuracy in milliseconds. Their investigative work is aimed at increasing timely decision-making in MRI re-scan. RAC is an increasingly investigated technique in MRI for the correction of motion-induced artefacts. Their study in applied imaging evidences superior motion correction via artificial intelligence (AI) techniques for RAC. Their investigation demonstrates further study of reliable AI techniques for RAC is warranted to benefit image correction and reconstruction in future MRI studies.

“AI-powered RAC can salvage innumerable images with motion artefacts to significantly boost the quantity of usable images and reduce financial losses for imaging studies,” said Pew-Thian Yap, PhD, Image Analysis Core Director at BRIC, who is leading the team.

Related Links:
UNC School of Medicine

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
Voluson Signature 18
Ultrasound Doppler System
Doppler BT-200
New
1.5T MRI System
uMR 670

Print article
Radcal

Channels

MRI

view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more