MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

3D Printed Glioblastomas Helps Evaluate Therapeutic Efficacy

By MedImaging International staff writers
Posted on 19 Mar 2020
Print article
Image: A new imaging technique enables the study of 3D-printed brain tumors (Photo courtesy of RPI)
Image: A new imaging technique enables the study of 3D-printed brain tumors (Photo courtesy of RPI)
A new study shows how bioprinting and imaging of glioblastoma cells can be used to generate three dimensional (3D) models of brain tumors.

Developed at the European Molecular Biology Laboratory (Heidelberg, Germany), Northeastern University (Boston, MA, USA), the Rensselaer Polytechnic Institute (RPI; Troy, NY, USA), and other institutions, the integrated platform is designed to generate an in-vitro 3D glioblastoma multiforme (GBM) model with perfused vascular channels, made out of patient-derived tumor cell bio-inks printed together with the blood vessels. The bioprinted blood vessels also provide channels for therapeutics to travel through, such as the chemotherapy drug Temozolomide.

In the body, drug delivery to GBM cells is especially complicated because of the blood-brain barrier (BBB). The 3D model, on the other hand, enables long-term culture and drug delivery and provides a more accurate evaluation of a drug's effectiveness than directly injecting the therapy into the cells. The 3D model also facilitates mesoscopic fluorescence molecular tomography (2GMFMT), a novel imaging method that can noninvasively assess longitudinal fluorescent signals from the therapeutic drugs over the whole in vitro model. The study was published on March 6, 2020, in Science Advances.

“There is a need to understand the biology and the complexity of the glioblastoma. What's known is that glioblastomas are very complex in terms of their makeup, and this can differ from patient to patient,” said corresponding author professor of biomedical engineering Xavier Intes, PhD, of RPI. “We developed a new technology that allows us to go deeper than florescence microscopy. It allows us to see, first, if the cells are growing, and then, if they respond to the drug. That's the unique part of the bioprinting that has been very powerful. It's closer to what would happen in vivo.”

GBM is a highly invasive malignant brain tumor that carries a dismal prognosis, with a median survival of 14 months and less than 10% 5-year survival rate after diagnosis, despite aggressive therapy, including surgery, radiotherapy, and chemotherapy.

Related Links:
European Molecular Biology Laboratory
Northeastern University
Rensselaer Polytechnic Institute


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Mobile Digital C-arm X-Ray System
HHMC-200D
New
Ultrasound Table
Ergonomic Advantage (EA) Line
New
Illuminator
Trimline Basic

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more