We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Artificial Intelligence Helps Cancer Patients Start Radiation Therapy Sooner

By MedImaging International staff writers
Posted on 19 Mar 2020
Print article
Illustration
Illustration
A new study by researchers from UT Southwestern’s Medical Artificial Intelligence and Automation (MAIA) Lab (Dallas, TX, USA) has demonstrated that artificial intelligence (AI) can help cancer patients start their radiation therapy sooner – and thereby decrease the odds of the cancer spreading – by instantly translating complex clinical data into an optimal plan of attack.

Patients generally have to wait for several days to a week before beginning therapy as their doctors manually develop treatment plans. Developing a sophisticated treatment plan can be a time-consuming and tedious process that involves careful review of the patient’s imaging data and several phases of feedback within the medical team. However, new research from UT Southwestern now shows how enhanced deep-learning models can streamline this process down to a fraction of a second.

The researchers explored various methods of using AI to improve multiple facets of radiation therapy – from the initial dosage plans required before the treatment can begin to the dose recalculations that occur as the plan progresses. Their study on dose prediction demonstrated AI’s ability to produce optimal treatment plans within five-hundredths of a second after receiving clinical data for patients.

The researchers achieved this by feeding the data for 70 prostate cancer patients into four deep-learning models. Through repetition, the AI learned to develop 3D renderings of how best to distribute the radiation in each patient. Each model accurately predicted the treatment plans developed by the medical team. The study builds upon other MAIA research published in 2019 that focused on developing treatment plans for lung and head and neck cancer.

“Our AI can cut out much of the back and forth that happens between the doctor and the dosage planner,” said Steve Jiang, Ph.D., who directs UT Southwestern’s MAIA Lab. “This improves the efficiency dramatically.”

A second new study by Jiang shows how AI can quickly and accurately recalculate dosages before each radiation session, taking into account how the patient’s anatomy may have changed since the last therapy. A conventional, accurate recalculation sometimes requires patients to wait for 10 minutes or more, in addition to the time needed to conduct anatomy imaging before each session. Jiang’s researchers developed an AI algorithm that combined two conventional models that had been used for dose calculation: a simple, fast model that lacked accuracy and a complex one that was accurate but required a much longer time, often about a half-hour. The newly developed AI assessed the differences between the models – based on data from 70 prostate cancer patients – and learned how to utilize both speed and accuracy to generate calculations within one second.

UT Southwestern plans to use the new AI capabilities in clinical care after implementing a patient interface. Meanwhile, the MAIA Lab is developing deep-learning tools for several other purposes, including enhanced medical imaging and image processing, automated medical procedures, and improved disease diagnosis and treatment outcome prediction.

Related Links:
MAIA Lab

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Needle Guide
Ultra-Pro II
New
Pre-Op Planning Solution
Sectra 3D Trauma
PACS Workstation
CHILI Web Viewer

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more