We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Deep Learning Model Accurately Classifies Chest X-Rays

By MedImaging International staff writers
Posted on 16 Dec 2019
Print article
Image: Chest X-ray of a pneumothorax missed by radiologist (L), but identified by the DL model (R) (Photo courtesy of Google Health)
Image: Chest X-ray of a pneumothorax missed by radiologist (L), but identified by the DL model (R) (Photo courtesy of Google Health)
Combining deep learning (DL) models with adjudicated image labels can help classify clinically important findings on chest X-rays, claims a new study.

Researchers at Google Health (Mountain View, CA), Apollo Radiology International (Hyderabad, India), California Advanced Imaging (Novato, USA), and other institutions have developed DL models that can accurately classify four clinically important chest X-ray findings - pneumothorax, nodules and masses, fractures, and airspace opacities. The target findings were selected in consultation with radiologists and clinical colleagues, so as to focus on conditions that are both critical for patient care, and for which chest X-ray images alone are an important and accessible first-line imaging study.

To do so, they used two large data sets. The first included 759,611 images from the Apollo Hospitals network (Hyderabad, India), and the second was drawn from a publicly available set of 112,120 images. Natural language processing and expert review of a small subset of images were then used to provide labels for 657,954 training images, with reference standards defined by four radiologists. The results showed that for all four radiologic findings, and across both datasets, DL models exhibited radiologist-level performance. The study was published on December 3, 2019, in Radiology.

“Achieving expert-level accuracy on average is just a part of the story. Even though overall accuracy for the DL models was consistently similar to that of radiologists for any given finding, performance for both varied across datasets,” said senior author Shravya Shetty, MSc, technical lead of Google Health. “This highlights the importance of validating deep learning tools on multiple, diverse datasets, and eventually across the patient populations and clinical settings in which any model is intended to be used.”

With millions of diagnostic examinations performed annually worldwide, chest X-rays are an important and accessible clinical imaging tool for the detection of many diseases. However, their usefulness can be limited by challenges in interpretation, which requires rapid, thorough evaluation of a two-dimensional image depicting complex, three-dimensional (3D) organs and disease processes. As a result, early-stage lung cancers or pneumothoraces (collapsed lungs) can often be missed, potentially leading to serious adverse outcomes.

Related Links:
Google Health
Apollo Radiology International
California Advanced Imaging


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Table
Powered Ultrasound Table-Flat Top
New
Wireless Handheld Ultrasound System
TE Air
Brachytherapy Planning System
Oncentra Brachy

Print article

Channels

MRI

view channel
Image: uMR Jupiter 5T MRI system is the world\'s first whole-body ultra-high field MRI to officially come to market (Photo courtesy of United Imaging)

World's First Whole-Body Ultra-High Field MRI Officially Comes To Market

The world's first whole-body ultra-high field (UHF) MRI has officially come to market, marking a remarkable advancement in diagnostic radiology. United Imaging (Shanghai, China) has secured clearance from the U.... Read more

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more