MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Machine Learning Helps Improve Mammography Workflow Efficiency

By MedImaging International staff writers
Posted on 22 Jun 2019
Print article
Image: New research shows machine learning can reduce the number of mammograms a radiologist needs to read (Photo courtesy of HealthManagement.org).
Image: New research shows machine learning can reduce the number of mammograms a radiologist needs to read (Photo courtesy of HealthManagement.org).
A team of researchers from the University of California Los Angeles (California, LA, USA) has demonstrated that machine learning can reduce the number of mammograms a radiologist needs to read by using a machine learning classifier to correctly identify normal mammograms and select the uncertain and abnormal examinations for radiological interpretation.

The researchers created an autonomous radiologist assistant (AURA), which was a modified version of a previous clinical decision support system, The aim was to determine if AURA could diagnose mammograms as negative while maintaining diagnostic accuracy and noting which scans would a radiologist would still require to read.

For the study, a research data set from over 7,000 women who were recalled for assessment at six UK National Health Service Breast Screening Program centers was used. The researchers used a convolutional neural network in conjunction with multi-task learning to extract imaging features from mammograms that mimic the radiological assessment provided by a radiologist, the patient’s non-imaging features, and pathology outcomes. The researchers then used a deep neural network to concatenate and fuse multiple mammogram views to predict both a diagnosis and a recommendation of whether or not additional radiological assessment was needed.

The study used a ten-fold cross-validation on 2,000 randomly selected patients from the data set, while using the remainder of the data set for convolutional neural network training. AURA maintained an acceptable negative predictive value of 0.99 while identifying 34% (95% confidence interval, 25%-43%) and 91% (95% confidence interval: 88%-94%) of the negative mammograms for test sets with a cancer prevalence of 15% and 1%, respectively.

The researchers concluded that machine learning can be leveraged to successfully reduce the number of normal mammograms that radiologists need to read without degrading diagnostic accuracy.

Related Links:
University of California Los Angeles

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Needle Guide
Ultra-Pro II
New
Color Doppler Ultrasound System
KC20
Ultrasound Software
UltraExtend NX

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more