MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Novel MRI Sensor Tracks Cerebral Signaling Processes

By MedImaging International staff writers
Posted on 12 Mar 2019
Print article
Image: Nanoparticles aggregating in the presence of calcium; sensor particles in the absence (L) or presence (R) of calcium (Photo courtesy of Alan Jasanoff / MIT).
Image: Nanoparticles aggregating in the presence of calcium; sensor particles in the absence (L) or presence (R) of calcium (Photo courtesy of Alan Jasanoff / MIT).
A new manganese-based magnetic resonance imaging (MRI) contrast agent can image intracellular calcium ions deep within the brain, according to a new study.

Developed by researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the manganese-based paramagnetic contrast agent (ManICS1-AM) is designed to permeate cells and undergo esterase cleavage. The contrast agent complex also contains a calcium-binding chelator. Once inside the cell, if calcium levels are low, the calcium chelator binds weakly to the manganese atom, shielding it from MRI detection. But when calcium flows into the cell, the chelator binds instead to the calcium, releasing the manganese, which makes ManICS1-AM appear brighter in an MRI image.

The researchers also tested ManICS1-AM in rats by injecting it into the striatum, a region deep within the brain that is involved in planning movement and learning new behaviors. They then used potassium ions to stimulate electrical activity in neurons of the striatum, and were able to measure the calcium response in small clusters of neurons involved in specific behaviors or actions. The new method can offer much more precise information on the location and timing of neuron activity than traditional functional MRI (fMRI), which measures blood flow in the brain. The study was published in the February 22, 2019, issue of Nature Communications.

“When neurons, or other brain cells called glia, become stimulated, they often experience more than tenfold increases in calcium concentration; our sensor can detect those changes,” said senior author Professor Alan Jasanoff, PhD. “In addition, this technique could be used to image calcium as it performs many other roles, such as facilitating the activation of immune cells. With further modification, it could also one day be used to perform diagnostic imaging of the brain or other organs whose functions rely on calcium, such as the heart.”

Calcium ions are essential to signal transduction in virtually all cells, where they coordinate processes ranging from embryogenesis to neural function and communication. Although optical probes for detecting intracellular calcium imaging have been available for decades, the development of probes for noninvasive detection of intracellular calcium signaling in deep tissue and intact organisms remains a challenge.

Related Links:
Massachusetts Institute of Technology

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Breast Imaging Workstation
SecurView
New
Wireless Handheld Ultrasound System
TE Air
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more