We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Crystalline Testing Rapidly Evaluates Radiation Exposure

By MedImaging International staff writers
Posted on 22 Jan 2019
Print article
Image: Testing crystalline insulators can measure background radiation levels (Photo courtesy of NC State University).
Image: Testing crystalline insulators can measure background radiation levels (Photo courtesy of NC State University).
Testing crystalline insulators found in most modern electronics could facilitate emergency response dosimetry or nuclear forensics, claims a new study.

Developed by researchers at North Carolina State University (NC State; Raleigh, USA), the new approach relies on testing surface mount resistors, found in everything from thumb drives to smartphones, in order to measure background radiation level. The resistor is first removed from the electronic device and placed in a thermally stimulated luminescence reader. Spectra reading related to the number of electrons found in flaws inherent to the sample's crystalline structure are then measured and fed into a custom single aliquot regenerative (SAR) protocol to calculate radiation exposure.

The results revealed that the surface mount resistors had sufficient thermoluminescence sensitivity to enable measurement at the natural background level. Detection limits were below 10 mGy, with 3% relative uncertainty at higher (1Gy) doses, substantially better than the level required for emergency response dosimetry. And because the technique is high-throughput and precise, it can adequately assess an individual's exposure in about an hour, compared to current biodosimetry methods, which can take weeks to complete. The study was published on December 11, 2018, in Radiation Measurements.

“If there is a large radiological event in a populated area, it would be difficult or impossible to treat everyone who could potentially have acute radiation syndrome. You'd need to be able to figure out who was exposed to enough radiation to require treatment. But it's not just about identifying those that require care,” said lead author nuclear engineer Robert Hayes, PhD. “For example, our technique might have been useful in a place like Fukushima, for putting people's minds at ease. It's like having your own personal radiation detector.”

Thermoluminescence occurs when high-energy ionizing radiation creates excited electronic states that are arrested for extended periods of time by localized defects or imperfections in a crystalline lattice, thus interrupting the normal intermolecular or inter-atomic interactions in the lattice. The absorbed energy is re-emitted as light upon heating of the material, which enables the trapped states to interact with phonons (lattice vibrations), to rapidly decay into lower-energy states, causing photon emission.

Related Links:
North Carolina State University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Software
UltraExtend NX
Thyroid Shield
Standard Thyroid Shield
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more