We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Obese Patients Are Exposed to Higher Radiation Doses

By MedImaging International staff writers
Posted on 10 Jan 2019
Print article
Image: A new study claims that obese patients are exposed to more radiation (Photo courtesy of University of Exeter).
Image: A new study claims that obese patients are exposed to more radiation (Photo courtesy of University of Exeter).
A new study finds that obese patients face an increased radiation-related lifetime cancer risk due to higher dose area product (DAP) radiation exposures.

Researchers at the University of Exeter (United Kingdom), Musgrove Park Hospital (Taunton, United Kingdom), and Derriford Hospital (Plymouth, United Kingdom) conducted a study involving 630 patients from a bariatric clinic who had a projection radiography history. The prime purpose of the study was to evaluate X-ray radiation dose delivered to obese patients, and its relationship to patient size. A secondary purpose was to estimate subsequent projected radiation-related lifetime cancer risk in patients with obesity.

Patients' DAP data were collected for all projection radiography, and the effective risk for patients with obesity was then compared to that of normal-weight patients. The results showed that patients with obesity received higher DAPs for all examinations, with the highest DAPs in abdominal and lumbar spine radiographs. In abdomen and chest x-rays, there were moderate-to-low correlations between patient size and DAP. The projected radiation-related lifetime cancer risk was up to 153% higher than in normal-weight adult patients. The study was published on December 20, 2018, in the Journal of Radiological Protection.

“As a researcher and a radiographer, I believe these radiation doses figures are only to be expected due to the lack of guidelines to aid imaging this group of patients,” said lead author Saeed Alqahtani, MD, of the University of Exeter, and colleagues. “As well as the doses of radiation given to the patient, many technical factors contribute to the image quality of an X-ray. We already started working on this issue in an attempt to produce prediction models that can aid radiographers to choose the best technical factors based on the patient's size.”

DAP reflects not only the dose within the radiation field but also the area of tissue irradiated. Therefore, it may be a better indicator of the overall risk of inducing cancer than the dose within the field. It also has the advantages of being easily measured, with the permanent installation of a DAP meter on the X-ray set. Due to the divergence of a beam emitted from a point source, the area irradiated increases with the square of distance from the source, while radiation intensity decreases according to the inverse square of distance. Consequently, the product of intensity and area, and therefore DAP, is independent of distance from the source.

Related Links:
University of Exeter
Musgrove Park Hospital
Derriford Hospital

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray QA Meter
Piranha CT
New
Illuminator
Trimline Basic
New
Ultrasound Table
Ergonomic Advantage (EA) Line

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more