We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

ECG Imaging Algorithm Could Help Reduce Invasive Heart Procedures

By MedImaging International staff writers
Posted on 30 Oct 2018
Print article
Image: Doctors can use these noninvasive maps of electrochemical potentials inside a patient\'s heart to localize the source of an abnormal heart rhythm (Photo courtesy of Abhejit Rajagopal).
Image: Doctors can use these noninvasive maps of electrochemical potentials inside a patient\'s heart to localize the source of an abnormal heart rhythm (Photo courtesy of Abhejit Rajagopal).
A group of researchers from the University of California, Santa Barbara (Santa Barbara, CA, USA) have developed new algorithms to localize the source of an atrial fibrillation, an abnormal heart rhythm.

Doctors use invasive procedures to map the hearts of patients suffering from atrial fibrillation and decide whether an ablation procedure to remove heart tissue is likely to have a positive outcome. Computed tomography (CT) scans or ultrasounds are useful in determining the structure of a patient’s heart, although invasive electrical procedures are used to identify and localize the source of the atrial fibrillation.

The new algorithms are based on the concept that the inverse operator, a function that maps body-surface electrocardiogram signals to endocardial potentials, can be non-linear and optimized using a set of historical data. This allows them to learn a model for predicting cardiac potentials from electrocardiograms that are realistic, accurate, and amenable to general-purpose use as a new cardiac imaging tool. This is significant because it suggests that much higher resolution reconstruction is possible if non-linear reconstruction algorithms are used, as compared to what is theoretically known using linear methods and partial data.

“Imagine a world where instead of a doctor listening to your heart through a stethoscope they can see a live video of your heart beating via ultrasound with corresponding electrical measurements of the local potentials on or around the cardiac tissue,” said UC Santa Barbara graduate student Abhejit Rajagopal, author of the paper published in the journal APL Bioengineering, from AIP Publishing. “The goal is for doctors to be able to treat patients with cardiac issues without needing to use invasive surgeries just to determine the cause.”

Related Links:
University of California, Santa Barbara

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C
Brachytherapy Planning System
Oncentra Brachy
New
Mobile Digital C-arm X-Ray System
HHMC-200D

Print article

Channels

MRI

view channel
Image: uMR Jupiter 5T MRI system is the world\'s first whole-body ultra-high field MRI to officially come to market (Photo courtesy of United Imaging)

World's First Whole-Body Ultra-High Field MRI Officially Comes To Market

The world's first whole-body ultra-high field (UHF) MRI has officially come to market, marking a remarkable advancement in diagnostic radiology. United Imaging (Shanghai, China) has secured clearance from the U.... Read more

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more