MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Flexible X-Ray Detectors Conform to Individual Specifications

By MedImaging International staff writers
Posted on 08 Aug 2018
Print article
Image: Organic semiconductors can be used to form flexible x-ray detectors (Photo courtesy of the University of Surrey).
Image: Organic semiconductors can be used to form flexible x-ray detectors (Photo courtesy of the University of Surrey).
A new study describes how x-ray detectors based on organic semiconductor technology could lead to tailor-made mammogram machines and more accurate security screenings at airports.

Under development at the University of Surrey (Guildford, United Kingdom) and the Siemens Healthineers Technology Center, the broadband X-ray detector concept is based on a thin film, hybrid semiconductor diode consisting of an organic bulk heterojunction (BHJ) with embedded bismuth oxide (Bi2O3) nanoparticles. The hybrid detectors demonstrate high sensitivities for both soft and hard X-rays generated from a medical linear accelerator, all achieved at low bias voltages and low power consumption.

According to the researchers, the new detectors can strongly compete with current technologies over the whole x-ray energy range spectrum. In addition, it is possible to create the organic semiconductor detectors so that they conform to the subject, something not possible with current rigid x-ray detectors. A new start-up company has been formed to further develop the technology and bring it to market, targeting the health, food monitoring, and pharmaceuticals sectors. The study was published on July 26, 2018, in Nature Communications.

“Our new technology has the potential to transform many industries that rely on x-ray detectors,” said lead author Hashini Thirimanne, MSc, a PhD student at the University of Surrey. “We believe that this innovation could help save lives, and keep our borders more secure, and make sure that the food we eat is as safe as it could possibly be.”

Current X-ray detector sensitivities are limited by the X-ray attenuation of the materials used, and consequently necessitate thick crystals, resulting in rigid structures, high operational voltages, and high cost. Increasing attention is thus being given to organic photodetectors for X-ray detection, which often involve the coupling of scintillator screens with organic photodiodes, insertion of high-atomic number nanoparticles, quantum dots, or scintillator particles into organic diodes, or the use of thin film organic semiconductors or crystals.

Related Links:
University of Surrey

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Doppler System
Doppler BT-200
New
Mobile Digital C-arm X-Ray System
HHMC-200D
Ultrasound Needle Guide
Ultra-Pro II

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more