MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

New MRI Techniques Help Predict Neuro Outcomes

By MedImaging International staff writers
Posted on 23 Oct 2017
Print article
Image: The images show an fMRI scan of a healthy control subject on the left; a scan of a patient after a cardiac arrest with a good functional outcome in the middle; and a cardiac arrest patient with a poor functional outcome on the right (Photo courtesy of RSNA).
Image: The images show an fMRI scan of a healthy control subject on the left; a scan of a patient after a cardiac arrest with a good functional outcome in the middle; and a cardiac arrest patient with a poor functional outcome on the right (Photo courtesy of RSNA).
Researchers are using advanced Magnetic Resonance Imaging (MRI) techniques to help predict the neurological outcomes of patients that survive a cardiac arrest.

The researchers used MRI-Diffusion Tensor Imaging (DTI) and resting-state functional MRI (fMRI) to show the large-scale functional integration, or connectome, of the brain.

The study included 46 patients who had suffered a cardiac arrest, and were in a coma, and was published online in the October 2017 issue of the journal Radiology by researchers from Johns Hopkins University School of Medicine (Baltimore, MD).

The researchers assessed the functional connectivity of the brain of the patients and found that brain connectivity measurements could predict the long-term recovery potential of patients with brain damage related to a cardiac arrest they had experienced. The researchers concluded that by carrying out MRI-based measurements of the functional connections in the brain they could better predict long-term recovery for those patients who suffered from a neurological disability following a cardiac arrest. The results also showed that connectivity measures could provide early markers of long-term recovery potential in such patients.

Lead author of the study, Robert D. Stevens, MD, said, “This is game-changing information about what happens in the brains of people who suffer cardiac arrest. We realize that network architectures can be selectively disrupted in this setting. Anti-correlation was preserved in patients who recovered and abolished in those who did not. Relative preservation of this anti-correlation was the most robust signal of a favorable outcome. Connectome studies have the potential to change not only outcome prediction, but to guide treatment as well."

Related Links:
Johns Hopkins University School of Medicine

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound System
Acclarix AX9
New
1.5T MRI System
uMR 670
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more