MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Palette of Fluorescent Molecules Advance Biological Imaging

By MedImaging International staff writers
Posted on 15 Sep 2017
Print article
Image: Rhodamine dyes fluorescing under ultraviolet illumination (Photo courtesy of Jonathan Grimm/ HHMI).
Image: Rhodamine dyes fluorescing under ultraviolet illumination (Photo courtesy of Jonathan Grimm/ HHMI).
A new technique can create a colorful spectrum of fluorescent dyes by utilizing specific chemical molecules called rhodamines, claims a new study.

The new dyes were developed by researchers at the Howard Hughes Medical Institute (HHMI; Ashburn, VA, USA), who previously developed the Janelia Fluor (JF) series of enhanced fluorescent dyes that are characterized by substantial increases in both brightness and photostability, achieved by incorporating four-member azetidine rings into classic fluorophore structures. They have now further refined and extended the strategy by incorporating 3-substituted azetidine groups, which allows rational tuning of the spectral and chemical properties of rhodamine dyes.

The new strategy allowed them to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. For the study, the researchers lit up cell nuclei, made larval fruit fly brains shine, and highlighted visual cortex neurons in mice that had tiny glass windows fitted into their skulls. And as the new dyes are synthesized in a single step with inexpensive ingredients, they are much cheaper than commercial alternatives. The study was published on September 4, 2017, in Nature Methods.

“By carefully placing just a few new atoms in the dye structure, the color and chemical properties of the dyes could also be fine-tuned, allowing many shades of green from a single scaffold; It's like going from the classic eight pack of crayons to the jumbo box of 64,” said senior author Luke Lavis, PhD, of the HHMI Janelia research campus. “Now we've figured out the rules, and we can make almost any color. Select the right atoms and chemists can engineer dyes with nearly any property they want.”

Until about 20 years ago, scientists relied on chemical fluorescent dyes to make biological molecules visible. But in 1994, a genetic trick was developed to tack green fluorescent protein (GFP), found in jellyfish, onto other cellular proteins, allowing researchers to trace protein movement without using expensive synthetic dyes. The discovery and development of GFP earned the Nobel Prize in chemistry for three scientists, including the late Professor Roger Tsien, PhD, a UCSD professor of pharmacology, chemistry, and biochemistry.

Related Links:
Howard Hughes Medical Institute

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Computed Tomography (CT) Scanner
Aquilion Serve SP
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
PACS Workstation
CHILI Web Viewer

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more