MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Model Revealed for Tailoring Pediatric CT Dose

By MedImaging International staff writers
Posted on 06 Sep 2017
Print article
Image: The image shows the effect of reconstruction Field of View (FOV) size on the displayed diameter of a nodule in a five week old, and a 12-year-old child (Photo courtesy of Ehsan Samei, Donald Frush, and Xiang Li).
Image: The image shows the effect of reconstruction Field of View (FOV) size on the displayed diameter of a nodule in a five week old, and a 12-year-old child (Photo courtesy of Ehsan Samei, Donald Frush, and Xiang Li).
Scientists have revealed a new scientific framework that will enable clinicians to tailor a precise radiation dose, and achieve the best image quality for pediatric patients.

Size-specific Computed Tomography (CT) imaging protocols are decided based on diagnostic accuracy per procedure, patient size, and radiation dose. The size of pediatric patients is a dominant factor for imaging structures in the body and tissues.

The scientists from the Duke University Medical Center (DukeHealth; Durham, NC, USA) and the Cleveland Clinic (Cleveland, OH, USA) published the results of their research online in the August 21, 2017, issue of the Journal of Medical Imaging.

The authors of the study based the new research on two of their own prior foundational studies, in which they assessed radiation dose, effective dose, and the risk index for nine pediatric age-size groups. The studies included simulated lesions, and added noise, and were assessed for the accuracy of nodule detection. The researchers then used the accuracy-dose relationships to optimize scan parameters for each category of patients.

The new model that the researchers developed is intended to help clinicians optimize individual scan parameters for a large range of pediatric body sizes, providing consistent diagnostic performance. The framework could also be used in the future for optimizing medical imaging exams across pediatric and adult patients, and other imaging modalities.

Associate Editor of the Journal of Medical Imaging, Christoph Hoeschen, Otto-von-Guericke Universität, said, "This is really a big step forward in imaging brain tumors and other issues in young patients. This methodology can serve as an advanced strategy to analyze the accuracy-dose tradeoff for other imaging systems, imaging technologies, or clinical tasks."

Related Links:
Duke University Medical Center
Cleveland Clinic

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
Color Doppler Ultrasound System
DRE Crystal 4PX
DR Flat Panel Detector
1500L

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more