We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Research Suggests fMRI May Not Map Neuronal Circuitry Precisely

By MedImaging International staff writers
Posted on 20 Jun 2016
Print article
Image: The illustration shows communication in the brain between neurons and blood vessels (Photo courtesy of Emma Vought, Medical University of South Carolina).
Image: The illustration shows communication in the brain between neurons and blood vessels (Photo courtesy of Emma Vought, Medical University of South Carolina).
Research results published ahead of print, in the May 25, 2016, online issue of Nature, suggest that discrepancies between vascular and neural responses could point towards limits in the use of functional MR Imaging (fMRI) for precise imaging of neural networks in the brain.

The researchers found that increases in blood flow were not precisely "tuned" to local neural activity during sensory stimulation. Until now vascular and local neural responses were thought to be tightly coupled and scientists using fMRI and other brain-imaging techniques depended on the assumption that vascular changes were directly reflected in a proportional change in local neural activity.

The researchers from the Medical University of South Carolina (MUSC; Charleston, SC, USA) concluded there was not a tight correlation between local neural activity and blood flow, and therefore fMRI and similar techniques could reveal information about the general functioning of an area in the brain, but cannot provide precise maps of neuronal circuits.

Prakash Kara, PhD senior author of the article, and associate professor at MUSC, said, "Because there isn't enough blood to send everywhere in the brain at the same time with the optimal levels of oxygen and glucose needed to support neural activity, it is widely accepted that the brain has a built-in auto-regulatory mechanism for increasing blood flow to regions with increased activity. The blood vessel dilation triggered by local, selective neural activity does not remain entirely local. From a vessel deep within the brain, the dilation propagates up along the vessel walls into a surface vessel and then down into other vessels that enter neighboring columns. Our team has just taken the first step, albeit an important one, in untangling the spatial precision of neurovascular coupling using very high-resolution imaging.

Related Links:
Medical University of South Carolina

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Brachytherapy Planning System
Oncentra Brachy
New
Ultrasound System
P20 Elite
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more