MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Therapeutic Ultrasound System Ablates Prostate Tissue

By MedImaging International staff writers
Posted on 22 Nov 2015
Print article
Image: The Ablatherm HIFU system probe (Photo courtesy of EDAP TMS).
Image: The Ablatherm HIFU system probe (Photo courtesy of EDAP TMS).
A new high-intensity focused ultrasound (HIFU) system offers an effective option for prostatic tissue ablation with a low occurrence of side effects.

The Ablatherm HIFU system is intended for treating patients with localized prostate cancer (stages T1-T2) who are not surgical candidates due to age or comorbidities, those who prefer an alternative option, or for patients who failed previous radiotherapy (RT) treatment. The system itself consists of a treatment module, a control module, and a probe with both treatment and imaging transducers. After a spinal epidural or general anesthetic (GA) is administered, the patient lies down on his right lateral decubitus and stays in this position throughout the treatment.

The Ablatherm HIFU probe is then introduced in the rectum, and the imaging transducer scans the prostate gland to plan robotic treatment. Once the ablation sequence is finalized, the treatment transducer emits HIFU ultrasound in the prostate gland; at the focal point—where the ultrasound waves are focused—the absorption of the ultrasound emission beam creates a sudden temperature increase, to around 85 °C, which destroys the tissue in the targeted zone. The Ablatherm HIFU system is a product of EDAP TMS (Vaulx-en-Velin, France), and has been approved by the US Food and Drug Administration (FDA).

“This clearance represents a unique opportunity for EDAP and its superior HIFU technology to penetrate the largest prostate market in the world in the same way it has emerged as the leading HIFU technology in Europe,” said Marc Oczachowski, CEO of EDAP TMS. “The pieces are in place to begin deploying Ablatherm devices in the US very quickly, and we look forward to bringing the technology to urologists as well as patients in need.”

HIFU technology is based on nonlinear acoustic mathematical optimization methods to analyze and simulate the propagation of sound in material. The information is then used to enhance the shape of an acoustic lens in such a way that that ultrasound pressure is focused precisely on the location of the tissue to be ablated, while the surrounding tissue retains as little damage as possible.

Related Links:

EDAP TMS
Link to video


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
1.5T MRI System
uMR 670
New
X-Ray Detector
FDR-D-EVO III
New
Illuminator
Trimline Basic

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more