We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Model Accurately Estimates Lung Function Using Chest X-Rays

By MedImaging International staff writers
Posted on 09 Jul 2024
Print article
Image: The AI model estimates lung function by observing radiographs, with lower values denoted by blue areas and higher values by red areas in the saliency maps (Photo courtesy of Osaka Metropolitan University)
Image: The AI model estimates lung function by observing radiographs, with lower values denoted by blue areas and higher values by red areas in the saliency maps (Photo courtesy of Osaka Metropolitan University)

Traditionally, lung function assessments are conducted using a spirometer, which requires patient cooperation. Patients must follow specific instructions for inhaling and exhaling into the device. This method becomes challenging when patients, such as infants or those with dementia, struggle to follow instructions or if the individual is bedridden. While clinicians rely on chest X-rays to diagnose conditions like tuberculosis and lung cancer, these images do not provide insights into lung functionality. To address these limitations, researchers have now developed an artificial intelligence (AI) model that is capable of estimating lung function from chest radiographs with high accuracy.

A research group from Osaka Metropolitan University (Osaka, Japan) trained, validated, and tested this AI model using over 140,000 chest radiographs collected over nearly two decades. They refined the AI model by comparing its estimations against actual spirometric data. The findings, published in The Lancet Digital Health, showed an exceptionally high agreement rate, with a Pearson’s correlation coefficient (r) exceeding 0.90, suggesting that this method holds substantial promise for clinical application. The AI model developed in this study could significantly expand options for pulmonary function assessment and especially benefit patients unable to perform traditional spirometry tests.

“Highly significant is the fact that just by using the static information from chest x-rays, our method suggests the possibility of accurately estimating lung function, which is normally evaluated through tests requiring the patients to exert physical energy,” said Associate Professor Daiju Ueda who led the research group. “This AI model was built through the cooperation of many people, from physicians, researchers, and technicians to patients at several institutions. If it can help lessen the burden on patients while also reducing medical costs, that would be a wonderful thing.”

Related Links:
Osaka Metropolitan University

New
MRI Infusion Workstation
BeneFusion MRI Station
Radiation Therapy Treatment Software Application
Elekta ONE
Portable Color Doppler Ultrasound System
S5000
New
HF Stationary X-Ray Machine
TR20G

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more