Computer Program Combines AI and Heat-Imaging Technology for Early Breast Cancer Detection
By MedImaging International staff writers Posted on 06 Feb 2024 |

Breast cancer remains the most prevalent cancer in women worldwide. In 2020, an estimated 2.1 million new cases and 627,000 deaths were reported by the World Health Organization (WHO), highlighting a rising incidence in many low- and middle-income countries. While mammography is a highly effective tool for early detection of breast cancer, its accessibility is limited due to cost and availability constraints. Now, researchers have developed a tool powered by machine learning that could serve as a complementary, non-invasive, and pain-free alternative to mammography for early breast cancer detection.
A group of researchers, led by Nanyang Technological University (NTU, Singapore), created the computer program to identify potential tumors in the human breast. This innovation is based on the understanding that malignant breast tumors distribute heat differently compared to healthy breast tissue. The program, named Physics-informed Neural Network (PINN), integrates artificial intelligence (AI) with heat-imaging technology. Developed in collaboration with medical doctors specializing in breast imaging and intervention, PINN analyzes thermal infrared images of the breast, detecting heat patterns to identify possible malignant tumors within five minutes. To refine and 'train' PINN, the team fed it with infrared breast scans of thousands of patients, both with and without malignant breast tumors.
Upon testing PINN on hundreds of infrared breast images that contained malignant tumors, the researchers discovered that the program could accurately identify harmful tumors with 91% accuracy. Unlike traditional methods, PINN does not require bulky equipment and operates much faster, using an infrared camera to capture images of the breast from multiple angles for computer analysis. Since it employs heat-imaging technology, it presents a safer alternative for women at higher risk of breast cancer or with a family history of the disease, especially considering that mammograms involve exposure to ionizing radiation. However, the researchers emphasize that PINN is not intended to replace current diagnostic techniques. Instead, it can act as a valuable and accessible tool for the early detection of breast cancer.
“Our study’s findings, and the development of PINN, centers around AI’s ability to swiftly and accurately analyze vast datasets, specifically thousands of infrared breast scans,” said Associate Professor Eddie Ng Yin Kwee, from the School of Mechanical and Aerospace Engineering at NTU Singapore, who led the study. “We also benefited from machine learning when calibrating PINN as it made the program easily trainable, aiding it to recognize patterns and generalize well to new, unseen data, making it adaptable and reliable. PINN could assist in the early identification of potential abnormalities in breast tissues, not only contributing to better treatment outcomes but also streamlines the screening process, allowing healthcare professionals to prioritize complex cases.”
Related Links:
NTU Singapore
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
MRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more