MRI AI Model Classifies Common Intracranial Tumors
By MedImaging International staff writers Posted on 07 Sep 2021 |

Image: GradCAM color maps colors showing tumor prediction (Photo courtesy of WUSTL)
An artificial intelligence (AI) 3D model is capable of classifying a brain tumor as one of six common types from a single magnetic resonance imaging (MRI) scan, claims a new study.
To develop the GradCAM algorithm, researchers at Washington University (WUSTL; St. Louis, MO, USA), used 2,105 T1-weighted MRI scans from four publicly available datasets, split into training (1396), internal (361), and an external (348) datasets. A convolutional neural network (CNN) was trained to discriminate between healthy scans and those with tumors, classified by type (high grade glioma, low grade glioma, brain metastases, meningioma, pituitary adenoma, and acoustic neuroma). Performance of the model was then evaluated, with feature maps plotted to visualize network attention.
The internal test results showed GradCAM achieved an accuracy of 93.35% across seven imaging classes (a healthy class and six tumor classes). Sensitivities ranged from 91% to 100%, and positive predictive value (PPV) ranged from 85% to 100%. Negative predictive value (NPV) ranged from 98% to 100% across all classes. Network attention overlapped with the tumor areas for all tumor types. For the external test dataset, which included only two tumor types (high-grade glioma and low-grade glioma), GradCAM had an accuracy of 91.95%. The study was published on August 11, 2021, in Radiology: Artificial Intelligence.
“These results suggest that deep learning is a promising approach for automated classification and evaluation of brain tumors. The model achieved high accuracy on a heterogeneous dataset and showed excellent generalization capabilities on unseen testing data,” said lead author Satrajit Chakrabarty, MSc, of the department of electrical and systems engineering. “This network is the first step toward developing an artificial intelligence-augmented radiology workflow that can support image interpretation by providing quantitative information and statistics.”
Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.
Related Links:
Washington University
To develop the GradCAM algorithm, researchers at Washington University (WUSTL; St. Louis, MO, USA), used 2,105 T1-weighted MRI scans from four publicly available datasets, split into training (1396), internal (361), and an external (348) datasets. A convolutional neural network (CNN) was trained to discriminate between healthy scans and those with tumors, classified by type (high grade glioma, low grade glioma, brain metastases, meningioma, pituitary adenoma, and acoustic neuroma). Performance of the model was then evaluated, with feature maps plotted to visualize network attention.
The internal test results showed GradCAM achieved an accuracy of 93.35% across seven imaging classes (a healthy class and six tumor classes). Sensitivities ranged from 91% to 100%, and positive predictive value (PPV) ranged from 85% to 100%. Negative predictive value (NPV) ranged from 98% to 100% across all classes. Network attention overlapped with the tumor areas for all tumor types. For the external test dataset, which included only two tumor types (high-grade glioma and low-grade glioma), GradCAM had an accuracy of 91.95%. The study was published on August 11, 2021, in Radiology: Artificial Intelligence.
“These results suggest that deep learning is a promising approach for automated classification and evaluation of brain tumors. The model achieved high accuracy on a heterogeneous dataset and showed excellent generalization capabilities on unseen testing data,” said lead author Satrajit Chakrabarty, MSc, of the department of electrical and systems engineering. “This network is the first step toward developing an artificial intelligence-augmented radiology workflow that can support image interpretation by providing quantitative information and statistics.”
Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.
Related Links:
Washington University
Latest MRI News
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
Channels
Radiography
view channel
AI Helps Radiologists Spot More Lesions in Mammograms
Breast cancer is a critical health issue, and accurate detection through mammography is essential for effective treatment. However, interpreting mammograms can be challenging for radiologists, particularly... Read more
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more