Lightweight MRI Scanner Packs a Heavyweight Punch
By MedImaging International staff writers Posted on 20 Jul 2021 |

Image: The Magnetom Free.Max wide bore MRI scanner (Photo courtesy of Siemens Healthineers)
A new High-V magnetic resonance imaging (MRI) scanner combines 0.55 T field strength with deep learning technologies and advanced image processing.
The Siemens Healthineers (Erlangen, Germany) Magnetom Free.Max 80 cm MR scanner weighs in at three metric tons, with a height that is slightly less than two meters, allowing it to be installed in most average sized locations, and with minimal structural modifications. In addition, whereas MRI scanners typically require several hundred liters of helium and a quench pipe to cool the magnetic array, it uses less than one liter of helium, and does not require a quench pipe, reducing system lifecycle and infrastructure costs.
Siemens Healthineers has also enlarged the bore size of the Magnetom Free.Max to 80 cm, larger than that of a conventional scanner, allowing full body scans to be completed and making the MRI experience more comfortable for patients. The enlarged bore also considerably improves pulmonary imaging. The system is reinformed by artificial intelligence (AI) workflows in order deliver sharper, higher-resolution images. On example is Deep Resolve, an AI algorithm that uses neural networks to generate high-resolution images from a lower input signal.
Siemens Healthineers also introduced the myExam Companion AI-based user guidance system which enables routine examinations to be automated, eliminating repetitive tasks and allowing novices to obtain consistent and excellent image quality with each examination. And despite the high degree of automation, more experienced users can still fully configure Magnetom Free.Max for most complex scanning requirements. The Magnetom Free.Max is also fully connected for continuous and remote monitoring, shortening exam intervals and helping to quickly transmit system diagnosis.
“Siemens Healthineers is proud to offer the Magnetom Free.Max, which brings magnetic resonance to new clinical fields with innovative digital technology, new siting features, and image quality that was once realized only at higher field strengths,” said Jane Kilkenny, vice president of MRI at Siemens Healthineers North America. “The scanner’s comparatively low weight and size can open the door to MR utilization in orthopedic centers, emergency rooms, outpatient centers, and even intensive care units.”
The Siemens Healthineers (Erlangen, Germany) Magnetom Free.Max 80 cm MR scanner weighs in at three metric tons, with a height that is slightly less than two meters, allowing it to be installed in most average sized locations, and with minimal structural modifications. In addition, whereas MRI scanners typically require several hundred liters of helium and a quench pipe to cool the magnetic array, it uses less than one liter of helium, and does not require a quench pipe, reducing system lifecycle and infrastructure costs.
Siemens Healthineers has also enlarged the bore size of the Magnetom Free.Max to 80 cm, larger than that of a conventional scanner, allowing full body scans to be completed and making the MRI experience more comfortable for patients. The enlarged bore also considerably improves pulmonary imaging. The system is reinformed by artificial intelligence (AI) workflows in order deliver sharper, higher-resolution images. On example is Deep Resolve, an AI algorithm that uses neural networks to generate high-resolution images from a lower input signal.
Siemens Healthineers also introduced the myExam Companion AI-based user guidance system which enables routine examinations to be automated, eliminating repetitive tasks and allowing novices to obtain consistent and excellent image quality with each examination. And despite the high degree of automation, more experienced users can still fully configure Magnetom Free.Max for most complex scanning requirements. The Magnetom Free.Max is also fully connected for continuous and remote monitoring, shortening exam intervals and helping to quickly transmit system diagnosis.
“Siemens Healthineers is proud to offer the Magnetom Free.Max, which brings magnetic resonance to new clinical fields with innovative digital technology, new siting features, and image quality that was once realized only at higher field strengths,” said Jane Kilkenny, vice president of MRI at Siemens Healthineers North America. “The scanner’s comparatively low weight and size can open the door to MR utilization in orthopedic centers, emergency rooms, outpatient centers, and even intensive care units.”
Latest MRI News
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more