Deep Learning Outperforms Standard Machine Learning at Brain Imaging Analysis, Finds New Study
By MedImaging International staff writers Posted on 20 Jan 2021 |

Illustration
Compared to standard machine learning models, deep learning models are largely superior at discerning patterns and discriminative features in brain imaging, despite being more complex in their architecture, according to a new study.
At the Center for Translational Research in Neuroimaging and Data Science (TReNDS; Atlanta, GA, USA), researchers are using deep learning to learn more about how mental illness and other disorders affect the brain. Advanced biomedical technologies such as structural and functional magnetic resonance imaging (MRI and fMRI) or genomic sequencing have produced an enormous volume of data about the human body. By extracting patterns from this information, scientists can glean new insights into health and disease. This is a challenging task, however, given the complexity of the data and the fact that the relationships among types of data are poorly understood. Deep learning, built on advanced neural networks, can characterize these relationships by combining and analyzing data from many sources.
Although deep learning models have been used to solve problems and answer questions in a number of different fields, some experts remain skeptical. Recent critical commentaries have unfavorably compared deep learning with standard machine learning approaches for analyzing brain imaging data. However, as demonstrated in the study, these conclusions are often based on pre-processed input that deprive deep learning of its main advantage—the ability to learn from the data with little to no preprocessing. In a comparative study of representative models from classical machine learning and deep learning, the researchers found that if trained properly, the deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.
In some cases, the researchers found that standard machine learning can outperform deep learning. For example, diagnostic algorithms that plug in single-number measurements such as a patient’s body temperature or whether the patient smokes cigarettes would work better using classical machine learning approaches. The downside of deep learning models is they are “data hungry” at the outset and must be trained on lots of information. But once these models are trained, they are just as effective at analyzing reams of complex data as they are at answering simple questions.
Another advantage is that scientists can reverse analyze deep-learning models to understand how they are reaching conclusions about the data. As the published study shows, the trained deep learning models learn to identify meaningful brain biomarkers. The researchers envision that deep learning models are capable of extracting explanations and representations not already known to the field and act as an aid in growing our knowledge of how the human brain functions. They conclude that although more research is needed to find and address weaknesses of deep-learning models, from a mathematical point of view, it’s clear these models outperform standard machine learning models in many settings.
“We compared these models side-by-side, observing statistical protocols so everything is apples to apples. And we show that deep learning models perform better, as expected,” said co-author Sergey Plis, director of machine learning at TReNDS and associate professor of computer science. “Deep learning’s promise perhaps still outweighs its current usefulness to neuroimaging, but we are seeing a lot of real potential for these techniques.”
Related Links:
Center for Translational Research in Neuroimaging and Data Science
At the Center for Translational Research in Neuroimaging and Data Science (TReNDS; Atlanta, GA, USA), researchers are using deep learning to learn more about how mental illness and other disorders affect the brain. Advanced biomedical technologies such as structural and functional magnetic resonance imaging (MRI and fMRI) or genomic sequencing have produced an enormous volume of data about the human body. By extracting patterns from this information, scientists can glean new insights into health and disease. This is a challenging task, however, given the complexity of the data and the fact that the relationships among types of data are poorly understood. Deep learning, built on advanced neural networks, can characterize these relationships by combining and analyzing data from many sources.
Although deep learning models have been used to solve problems and answer questions in a number of different fields, some experts remain skeptical. Recent critical commentaries have unfavorably compared deep learning with standard machine learning approaches for analyzing brain imaging data. However, as demonstrated in the study, these conclusions are often based on pre-processed input that deprive deep learning of its main advantage—the ability to learn from the data with little to no preprocessing. In a comparative study of representative models from classical machine learning and deep learning, the researchers found that if trained properly, the deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.
In some cases, the researchers found that standard machine learning can outperform deep learning. For example, diagnostic algorithms that plug in single-number measurements such as a patient’s body temperature or whether the patient smokes cigarettes would work better using classical machine learning approaches. The downside of deep learning models is they are “data hungry” at the outset and must be trained on lots of information. But once these models are trained, they are just as effective at analyzing reams of complex data as they are at answering simple questions.
Another advantage is that scientists can reverse analyze deep-learning models to understand how they are reaching conclusions about the data. As the published study shows, the trained deep learning models learn to identify meaningful brain biomarkers. The researchers envision that deep learning models are capable of extracting explanations and representations not already known to the field and act as an aid in growing our knowledge of how the human brain functions. They conclude that although more research is needed to find and address weaknesses of deep-learning models, from a mathematical point of view, it’s clear these models outperform standard machine learning models in many settings.
“We compared these models side-by-side, observing statistical protocols so everything is apples to apples. And we show that deep learning models perform better, as expected,” said co-author Sergey Plis, director of machine learning at TReNDS and associate professor of computer science. “Deep learning’s promise perhaps still outweighs its current usefulness to neuroimaging, but we are seeing a lot of real potential for these techniques.”
Related Links:
Center for Translational Research in Neuroimaging and Data Science
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more