Machine Learning Can Predict Heart Disease Better Than Other Risk Models
By MedImaging International staff writers Posted on 17 Jul 2019 |

Image: Research shows machine learning is more effective at predicting heart disease over conventional risk models (Photo courtesy of Health Imaging).
A study conducted by researchers from the Yale School of Medicine (New Haven, CT, USA) has demonstrated that machine learning (ML), a type of artificial intelligence, performs better than conventional risk models at predicting heart attacks and other cardiac events when used along with a common heart scan.
Accurate risk assessment is crucial for early interventions in the case of heart diseases, although risk determination is an imperfect science, and popular existing models such as the Framingham Risk Score have limitations, as they do not directly consider the condition of the coronary arteries. Coronary computed tomography arteriography (CCTA), a kind of CT that provides highly detailed images of the heart vessels, has emerged as a promising tool for refining risk assessment. In fact, it has proved so promising that a multi-disciplinary working group recently introduced a scoring system for summarizing CCTA results. The decision-making tool, known as the coronary artery disease reporting and data system (CAD-RADS), emphasizes stenoses, or blockages and narrowing in the coronary arteries. CAD-RADS is an important and a useful development in the management of cardiac patients, although its focus on stenoses could leave out important information about the arteries, according to the researchers.
Noting that CCTA shows more than just stenoses, the researchers investigated an ML system capable of mining the myriad details in these images for a more comprehensive prognostic picture. For the study, the research team compared the ML approach with CAD-RADS and other vessel scoring systems in 6,892 patients. The researchers followed the patients for an average of nine years after CCTA. There were 380 deaths from all causes, including 70 from coronary artery disease. In addition, 43 patients reported heart attacks.
In comparison to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not. When deciding whether to start statins, the ML score ensured that 93% of patients with events would receive the drug, as compared with only 69% if CAD-RADS were relied on.
If machine learning can improve vessel scoring, then it would enhance the contribution of non-invasive imaging to cardiovascular risk assessment. Additionally, if the ML-derived vessel scores could be combined with non-imaging risk factors, such as age, gender, hypertension and smoking, to develop more comprehensive risk models, then it would benefit both physicians and patients.
“The risk estimate that you get from doing the machine learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS. Both methods perform better than just using the Framingham risk estimate. This shows the value of looking at the coronary arteries to better estimate people’s risk,” said study lead author Kevin M. Johnson, M.D, associate professor of radiology and biomedical imaging at the Yale School of Medicine.
Related Links:
Yale School of Medicine
Accurate risk assessment is crucial for early interventions in the case of heart diseases, although risk determination is an imperfect science, and popular existing models such as the Framingham Risk Score have limitations, as they do not directly consider the condition of the coronary arteries. Coronary computed tomography arteriography (CCTA), a kind of CT that provides highly detailed images of the heart vessels, has emerged as a promising tool for refining risk assessment. In fact, it has proved so promising that a multi-disciplinary working group recently introduced a scoring system for summarizing CCTA results. The decision-making tool, known as the coronary artery disease reporting and data system (CAD-RADS), emphasizes stenoses, or blockages and narrowing in the coronary arteries. CAD-RADS is an important and a useful development in the management of cardiac patients, although its focus on stenoses could leave out important information about the arteries, according to the researchers.
Noting that CCTA shows more than just stenoses, the researchers investigated an ML system capable of mining the myriad details in these images for a more comprehensive prognostic picture. For the study, the research team compared the ML approach with CAD-RADS and other vessel scoring systems in 6,892 patients. The researchers followed the patients for an average of nine years after CCTA. There were 380 deaths from all causes, including 70 from coronary artery disease. In addition, 43 patients reported heart attacks.
In comparison to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not. When deciding whether to start statins, the ML score ensured that 93% of patients with events would receive the drug, as compared with only 69% if CAD-RADS were relied on.
If machine learning can improve vessel scoring, then it would enhance the contribution of non-invasive imaging to cardiovascular risk assessment. Additionally, if the ML-derived vessel scores could be combined with non-imaging risk factors, such as age, gender, hypertension and smoking, to develop more comprehensive risk models, then it would benefit both physicians and patients.
“The risk estimate that you get from doing the machine learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS. Both methods perform better than just using the Framingham risk estimate. This shows the value of looking at the coronary arteries to better estimate people’s risk,” said study lead author Kevin M. Johnson, M.D, associate professor of radiology and biomedical imaging at the Yale School of Medicine.
Related Links:
Yale School of Medicine
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
Clinical ultrasound, commonly used in pregnancy scans, provides real-time images of body structures. It is one of the most widely used imaging techniques in medicine, but until recently, it had little... Read more
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more