Adaptable Contrast Media Improves MRI Diagnostics
By MedImaging International staff writers Posted on 12 Dec 2018 |

Image: Xenon filled vesicles provide higher contrast MRI scans than conventional contrast agents (Photo courtesy of Barth van Rossum / FMP).
An adaptable protein structure that absorbs dissolved xenon in a self-regulating way allows for higher quality magnetic resonance imaging (MRI) scans with less contrast medium, claims a new study.
Developed by researchers at Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP; Berlin, Germany) and the California Institute of Technology (Caltech; Pasadena, USA), the new contrast media is based on nanometric hollow protein structures produced by bacteria in order to regulate flotation depth, similar to a miniaturized swim bladder in fish. These so-called "gas vesicles" have a porous wall structure through which xenon gas can flow in and out, allowing them to elastically adjust their influence on the measured xenon.
Unlike conventional contrast media, the gas vesicles always absorb a fixed portion of the xenon present in the environment. This characteristic can be taken advantage of in MRI diagnostics, because more xenon gas must be used in order to obtain better images. While the concentration of a conventional contrast medium would need to be adjusted in order to achieve a change in signal for all xenon atoms, the gas vesicles automatically fill up with more xenon when this is offered.
As much more xenon is absorbed into the vesicles than with conventional contrast media, the image contrast is many times higher than the background noise, and image quality is significantly improved, allowing identification of disease markers that occur in relatively low concentrations. In animal studies, the researchers were able to produce MRI images with particle concentrations one million times lower than those of the contrast media currently employed. The study was published in the November 2018 issue of ACS Nano.
“We need new, improved methods, in which as little contrast medium as possible influences as much of the signal-transmitting substance as possible, typically water,” said senior author Leif Schroeder, PhD, director of the molecular imaging group at FMP. “They act like a kind of balloon, to which an external pump is attached. If the balloon is inflated by xenon atoms flowing into the gas vesicle its size does not change, but the pressure does increase, similar to a bicycle tire tube.”
Hyperpolarization of the nuclei of noble gases (usually using lasers) aligns them so that they become visible on an MRI scan. To detect specific cellular disease markers, they need to be bound to them for a short time. Gases used for medical imaging purposes include helium (He), argon (Ar), krypton (Kr), and xenon (Xe). The hyperpolarized spin state exists at very low spin temperatures, which leads to high magnetization of the spin ensemble, resulting in very high nuclear magnetic resonance signal intensity, which returns to thermal equilibrium by depolarization.
Related Links:
Leibniz-Forschungsinstitut für Molekulare Pharmakologie
California Institute of Technology
Developed by researchers at Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP; Berlin, Germany) and the California Institute of Technology (Caltech; Pasadena, USA), the new contrast media is based on nanometric hollow protein structures produced by bacteria in order to regulate flotation depth, similar to a miniaturized swim bladder in fish. These so-called "gas vesicles" have a porous wall structure through which xenon gas can flow in and out, allowing them to elastically adjust their influence on the measured xenon.
Unlike conventional contrast media, the gas vesicles always absorb a fixed portion of the xenon present in the environment. This characteristic can be taken advantage of in MRI diagnostics, because more xenon gas must be used in order to obtain better images. While the concentration of a conventional contrast medium would need to be adjusted in order to achieve a change in signal for all xenon atoms, the gas vesicles automatically fill up with more xenon when this is offered.
As much more xenon is absorbed into the vesicles than with conventional contrast media, the image contrast is many times higher than the background noise, and image quality is significantly improved, allowing identification of disease markers that occur in relatively low concentrations. In animal studies, the researchers were able to produce MRI images with particle concentrations one million times lower than those of the contrast media currently employed. The study was published in the November 2018 issue of ACS Nano.
“We need new, improved methods, in which as little contrast medium as possible influences as much of the signal-transmitting substance as possible, typically water,” said senior author Leif Schroeder, PhD, director of the molecular imaging group at FMP. “They act like a kind of balloon, to which an external pump is attached. If the balloon is inflated by xenon atoms flowing into the gas vesicle its size does not change, but the pressure does increase, similar to a bicycle tire tube.”
Hyperpolarization of the nuclei of noble gases (usually using lasers) aligns them so that they become visible on an MRI scan. To detect specific cellular disease markers, they need to be bound to them for a short time. Gases used for medical imaging purposes include helium (He), argon (Ar), krypton (Kr), and xenon (Xe). The hyperpolarized spin state exists at very low spin temperatures, which leads to high magnetization of the spin ensemble, resulting in very high nuclear magnetic resonance signal intensity, which returns to thermal equilibrium by depolarization.
Related Links:
Leibniz-Forschungsinstitut für Molekulare Pharmakologie
California Institute of Technology
Latest MRI News
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel
Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
Clinical ultrasound, commonly used in pregnancy scans, provides real-time images of body structures. It is one of the most widely used imaging techniques in medicine, but until recently, it had little... Read more
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more